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On the Sum Rate of a 2 × 2 Interference Network
Murali Sridhar, Srikrishna Bhashyam

Abstract—In an M × N interference network, there are M
transmitters and N receivers with each transmitter having
independent messages for each of the 2N −1 possible non-empty
subsets of the receivers. We consider the 2 × 2 interference
network with 6 possible messages, of which the 2 × 2 interference
channel and X channel are special cases obtained by using
only 2 and 4 messages respectively. Starting from an achievable
rate region similar to the Han-Kobayashi region, we obtain an
achievable sum rate. For the Gaussian interference network, we
determine which of the 6 messages are sufficient for maximizing
the sum rate within this rate region for the low, mixed, and
strong interference conditions. It is observed that 2 messages are
sufficient in several cases. Finally, we show that sum capacity
is achieved using only 2 messages for a subset of the mixed
interference conditions.

I. INTRODUCTION

The Interference Network (IN) was introduced by Carleial
[1] as a multi-terminal communication problem involving M
transmitters and N receivers with each transmitter having
independent messages for each of the 2N − 1 possible non-
empty subsets of the receivers. Thus, a total of M(2N − 1)
messages are transmitted across the channel leading to a
M(2N − 1) dimensional capacity region. The multiple access
channel (MAC), broadcast channel (BC), interference channel
(IC), and X channel are all special cases of the Interference
network (IN). For example, when M = N and transmitter k
is interested in communication with only receiver k, we have
the M user IC. In the two user X channel, each transmitter
Txi, i ∈ {1, 2} has 2 independent messages corresponding to
the two receivers, i.e., four messages in total.

The IC has been studied extensively in [1–8]. While the
capacity region is unknown, several inner and outer bounds
have been derived for the capacity region and the sum capacity
[3, 5–8]. Under some channel conditions (or interference con-
ditions), capacity or sum capacity has been determined [1–4].
The X channel has been studied in [9–14] to obtain capacity
region bounds and generalized degrees of freedom.

Using all M(2N − 1) messages has been observed to
be important when interference networks arise as states in
a half-duplex relay network [15, 16]. In half-duplex relay
networks, the set of transmitters and receivers at any given
time instant form an interference network. The choice of
rates for the M(2N − 1) messages depends on the overall
information flow constraints. Therefore, a characterization of
the M(2N − 1) dimensional rate region is useful in flow
optimization. The messages that result in optimal flow will
depend on the connectivity and the channel conditions of the
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links. In the context of X channels, it has been seen that using
2 messages is sum rate optimal under a subset of low and
strong interference conditions [9, 17]. We consider the more
general IN and determine which of the 6 messages are useful
for all interference conditions.

The achievable rate region obtained using Han-Kobayashi
type public-private message splitting of the 4 messages on the
X channel in [14] provides an achievable rate region for the
2 × 2 IN. In this paper, we obtain the following results: (1)
Starting from an achievable rate region in [14], we first obtain
an achievable sum rate of the 2 × 2 IN. (2) For the Gaussian
interference network, we determine which of the 6 messages
are sufficient for maximizing the sum rate within this rate
region for the low, mixed, and strong interference conditions.
It is observed that 2 messages are sufficient in several cases.
(3) Finally, we show that sum capacity is achieved using only
2 messages for a subset of the mixed interference conditions.

II. TWO USER DISCRETE MEMORYLESS IN (DMIN)
The 2 × 2 DMIN shown in Fig. 1 is a communication

model where there are 3 messages from each transmitter. The
messages from Tx1 are:

1) Direct private message U1 to Rx1.
2) Common message V1 to both receivers {Rx1, Rx2}.
3) Cross private message W1 to Rx2.

Tx1

Tx2

Rx1

Rx2

U1, V1, W1

U2, V2, W2

Û1, V̂1, V̂2, Ŵ2

Û2, V̂1, V̂2, Ŵ1

Fig. 1. 2 × 2 Interference Network

Similarly the messages U2, V2 and W2 originate from Tx2

communicating with Rx2, {Rx1, Rx2} and Rx1 respectively.
The receiver Rx1 will decode 4 messages namely U1, V1, V2

and W2. Similarly, Rx2 will decode U2, V1, V2 and W1.
Although an achievable rate region for the two user DMIN

has not been explicitly reported, we can see that Han-
Kobayashi (HK) [3] type message splitting on the X channel,
given in [14], addresses the same problem as the IN. The
HK [3] scheme, originally proposed for two user IC, allows
partial decoding of interference at the unintended receiver
so that a common part of the interference can be decoded
(and subtracted) leading to better reception of its intended
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signal. The intended receiver decodes a private message, which
cannot be decoded at the other receiver, and also decodes this
common message combining them to form its total message.
In [14], HK message splitting is applied to each of the 4
messages of the X channel leading to 8 (4× 2) messages and
an achievable region is given. It is easy to see that 2 public
messages originating from each transmitter can be clubbed
together as a single public message, resulting in a total of 6
messages. Here, we present an achievable rate region below
for the 6 IN messages.
Let Z = QU1V1W1X1U2V2W2X2Y1Y2 ∈ Ω,where Ω is
the set of all probability distributions over the variables.
U1, V1,W1, U2, V2,W2 are auxiliary random variables and
X1, X2, Y1, Y2 are random variables on X1,X2,Y1,Y2 respec-
tively satisfying:

1) U1, V1,W1, U2, V2,W2 are mutually independent given
Q,the time sharing random variable.

2) X1 = f1(U1, V1,W1|Q), X2 = f2(U2, V2,W2|Q),
where f1 and f2 are deterministic functions of their
arguments.

Let R(Z) denote the rate region formed by the six tuple
rate (RU1 , RV1 , RW1 , RU2 , RV2 , RW2) satisfying the following
constraints:

RS1 =
∑
s∈S1

Rs ≤ I(S1;Y1|S̄1, Q) ∀S1, (1)

where S1 is any non-empty subset of M1 = {U1, V1, V2,W2},
and S̄1 = M1\S1. Since there are 15 possible subsets S1,
we have 15 constraints. Similarly, considering Rx2, we get
another 15 constraints corresponding to each non-empty subset
S2 of M2 = {U2, V1, V2,W1}. For example, one of 30
constraints is RU2 +RV2 +RW1 ≤ I(U2, V2,W1;Y2|V1, Q).

Let RIN be the closure of
⋃
Z∈ΩR(Z). Then, any rate

tuple in RIN is achievable for the two user DMIN. The proof
of achievability uses jointly typical decoding and is similar to
the proof in [3].

III. ACHIEVABLE SUM RATE

Let the sum rate S = RU1 +RV1 +RW1 +RU2 +RV2 +RW2 .
Theorem 1: The achievable sum rate S is bounded as

follows.
S ≤ min{T1, T2, T3, T4}, (2)

where

T1 = I(U2, V1, V2,W1;Y2|Q) + I(U1,W2;Y1|V1, V2, Q),
T2 = I(U1, V1, V2,W2;Y1|Q) + I(U2,W1;Y2|V1, V2, Q),
T3 = I(U1, V2,W2;Y1|V1, Q) + I(U2, V1,W1;Y2|V2, Q).
T4 = I(U1, V1,W2;Y1|V2, Q) + I(U2, V2,W1;Y2|V1, Q),

Proof: See Appendix A.
It is worth noting that the sum rate can be bounded by

several expressions using the constraints in (1). For example,
by adding the bounds on RU1 +RV1 +RV2 , RU2 +RW1 and
RW2 in three of the constraints, we can get a bound for S.
One can obtain similar bounds by several groupings of the
6 rate components of sum rate and adding the corresponding
constraints from the rate region. The sum rate is bounded by

the minimum of all such bounds. In the proof, it is shown that
show that only 4 of the combinations are useful and the others
are redundant.

IV. GAUSSIAN INTERFERENCE NETWORK (GIN)

The standard form for the Gaussian IN [1] is

Y1 = X1 + h2X2 + Z1

Y2 = X2 + h1X1 + Z2 (3)

where Z1, Z2 ∼ N(0, 1). Power constraint P1, P2 are imposed
on Tx1 and Tx2 respectively. The channel (or interference)
conditions for the two user GIN can be classified into the
following cases.

1) Low Interference (LI): 0 ≤ h1 ≤ 1, 0 ≤ h2 ≤ 1.
2) Mixed Interference (MI): 0 ≤ h1 ≤ 1, h2 ≥ 1 or 0 ≤

h2 ≤ 1, h1 ≥ 1.
3) Strong Interference (SI): 1 ≤ h2

1 ≤ P2 + 1, 1 ≤ h2
2 ≤

P1 + 1.
4) Very Strong Interference (VSI): h2

1 ≥ P2+1, h2
2 ≥ P1+1.

For the GIN, the DMIN rate region can be extended as follows.
We consider the non-time sharing case, where Q = φ, a
constant. Further, we limit ourselves to X1 = U1 + V1 +
W1, X2 = U2 + V2 + W2, where U1, V1,W1, U2, V2,W2

are independent Gaussian codebooks. Let us denote this rate
region as RGIN . We employ superposition coding [18] at the
transmitters with power distribution defined as follows. Mes-
sages Ui, Vi, and Wi are transmitted using powers αiPi, βiPi,
and γiPi, respectively, for i = 1, 2. Also, αi + βi + γi = 1.
Let I1 = 1 + h2

2α2P2 + γ1P1 and I2 = 1 + h2
1α1P1 + γ2P2.

Let C(x) = 0.5 log2(1 +x). An achievable rate region for the
two user GIN is once again defined by 30 constraints. The 15
constraints corresponding equation (1) are given by:

RS1 =
∑
s∈S1

Rs ≤ C

(∑
s Ps
I1

)
,

where PU1 = α1P1, PV1 = β1P1, PV2 = h2
2β2P2, and

PW2 = h2
2γ2P2. Similarly, 15 more constraints can be written

considering the rate constraints for Rx2. Note that

RGIN ⊆ RGINQ
⊆ RIN ⊆ CIN ,

where RGINQ
is the rate-region with optimal time sharing

(Q 6= φ) strategy and Gaussian input. RIN is the optimal
time sharing strategy with optimal input distribution and CIN
is the capacity of the IN.

V. ACHIEVABLE SUM RATES IN GIN

In this section, we determine which of the 6 messages
in the IN are useful in maximizing the sum rate for the
various interference conditions. In [9], a similar question was
answered for the X channel in a subset of the low and strong
interference regimes extending the result for IC in [2]. Since
the sum capacity of an IN is unknown, we first study the
maximum sum rate within the achievable rate region described
in the previous section as summarized in Table I. In Section
VI, we show that the sum capacity is indeed achieved for some
mixed interference conditions.
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TABLE I
SUMMARY OF RESULTS

Region Sub-region Message-set
L.I - U1, V1, U2, V2

|h1(1 + h2
2P2) + h2(1 + h2

1P1)| ≤ 1 U1, U2

M.I 0 ≤ h1 ≤ 1, h2 ≥ 1 U1, W2

0 ≤ h2 ≤ 1, h1 ≥ 1 U2, W1

S.I - W1, V1, W2, V2

V.S.I - W1, V1, W2, V2

|h−1
1 (1 + P2) + h−1

2 (1 + P1)| ≤ 1 W1, W2

For the GIN, the terms T1, T2, T3, and T4 in the sum rate
bound in equation (2) are:

T1 = C

(
α1P1 + h2

2γ2P2

1 + h2
2α2P2 + γ1P1

)
+ C

(
γ̄2P2 + h2

1ᾱ1P1

1 + h2
1α1P1 + γ2P2

)
,

T2 = C

(
γ̄1P1 + h2

2ᾱ2P2

1 + h2
2α2P2 + γ1P1

)
+ C

(
α2P2 + h2

1γ1P1

1 + h2
1α1P1 + γ2P2

)
,

T3 = C

(
α1P1 + h2

2ᾱ2P2

1 + h2
2α2P2 + γ1P1

)
+ C

(
α2P2 + h2

1ᾱ1P1

1 + h2
1α1P1 + γ2P2

)
,

T4 = C

(
γ̄1P1 + h2

2γ2P2

1 + h2
2α2P2 + γ1P1

)
+ C

(
γ̄2P2 + h2

1γ1P1

1 + h2
1α1P1 + γ2P2

)
,

where ᾱi = 1− αi and γ̄i = 1− γi.

A. Mixed Interference
There are two cases for Mixed Interference: (i) 0 ≤ h2 ≤

1, h1 ≥ 1, and (ii) 0 ≤ h1 ≤ 1, h2 ≥ 1.
Theorem 2: 1) For case (i), the achievable sum rate is

maximized by transmitting only U2 and W1, both to
Rx2. The sum rate achieved is the MAC sum capacity
at Rx2 = C(h2

1P1 + P2).
2) For case (ii), the achievable sum rate is maximized by

transmitting only U1 and W2, both to Rx1. The sum rate
achieved is the MAC sum capacity at Rx1 = C(h2

2P2 +
P1).

Proof: The proof of statement (1) is in Appendix B. The
other statement can be proved similarly by swapping indices
1 and 2.

B. Low Interference
Theorem 3: 1) Let Ti = ti for i = 1, 2, 3, 4 when the

power sharing fractions are α1, β1, γ1, α2, β2, γ2. Let
Ti = t

′

i when the power sharing fractions are α
′

1 = α1,
β

′

1 = β1 + γ1, γ
′

1 = 0, α
′

2 = α2, β
′

2 = β2 + γ2, γ
′

2 = 0.
Then t

′

i ≥ ti for i = 1, 2, 3, 4 if 0 ≤ h1, h2 ≤ 1.
2) Messages W1 and W2 are not required to maximize the

sum rate when 0 ≤ h1, h2 ≤ 1.
Proof: See Appendix C.

From the theorem above, it is clear that only 4 messages
U1, U2, V1, and V2 are required (as in the IC) to maximize
sum rate in the low interference regime (as mentioned in Table
I). Further, in [2], it is also proved that in the IC, for channel
conditions satisfying

|h1(1 + h2
2P2) + h2(1 + h2

1P1)| ≤ 1, (4)

encoding messages U1, U2 alone using Gaussian codebooks
and treating interference as noise at each receiver is sum-
capacity optimal. In [9], this result is extended to the X

channel as well. Having shown that γi = 0, i ∈ {1, 2}, the
same result also holds for RGIN .

C. Strong Interference

The conditions for strong interference are 1 ≤ h2
1 ≤ P2 +

1, 1 ≤ h2
2 ≤ P1 + 1. Define X ′1 = h1X1, X

′
2 = h2X2. Now

the equation (3) can be rewritten as

Y1 =
X ′1
h1

+X ′2 + Z1

Y2 =
X ′2
h2

+X ′1 + Z2 (5)

In the strong interference regime, 1
h1
≤ 1, 1

h2
≤ 1.Thus, we

now have an equivalent GIN in low interference corresponding
to the each strong interference GIN. X

′

2 now carries the direct
messages to Rx1 and X

′

1 carries the cross private message
to Rx1. The roles of Ui and Wi, i ∈ {1, 2} interchange from
their respective roles in the low interference regime. Therefore,
αi = 0 (i.e., U1 and U2 are not necessary) for maximizing the
sum rate.

D. Very Strong Interference

In this case, we can make the following observations:
(1) The conclusions for strong interference that αi = 0 holds
here as well.

(2) For the model (5) given above, let P ′1 = var(X ′1) = h2
1P1,

P ′2 = var(X ′2) = h2
2P2, h

′

1 = 1/h1, and h
′

2 = 1/h2. We
already know that, if

|h
′

1(1 + h
′2
2 P

′

2) + h
′

2(1 + h
′2
1 P

′

1)| ≤ 1 (6)

then this corresponds the sub-region in low interference dis-
cussed earlier. In this region, only messages W1 and W2 are
sufficient to maximize the sum rate. The condition can be
rewritten in terms of the original channel and power variables
are ∣∣∣∣1 + P2

h1
+

1 + P1

h2

∣∣∣∣ ≤ 1. (7)

Thus, there is a sub-region within the very strong interference
satisfying the above condition where only the 2 messages W1

and W2 are necessary to maximize sum rate in RGIN .

VI. SUM-CAPACITY IN THE MIXED INTERFERENCE
REGION

In the previous section, we proved that in the mixed
interference region the achievable sum rate is maximized by
transmitting only 2 messages to one of the receivers, i.e., a
MAC at Rx2 (if h1 ≥ 1, 0 ≤ h2 ≤ 1) or MAC at Rx1 (if
h2 ≥ 1, 0 ≤ h1 ≤ 1).

Now, we ask the following question: Are there channel
conditions such that this MAC sum rate is the sum capacity
for the GIN? Some known outerbounds on sum capacity like
the MIMO bound (both Tx and Rx cooperation) [19], and
the 2× 1 MIMO Gaussian BC bound (Tx cooperation) [20],
are larger than this MAC sum rate in the mixed interference
region. Here, we establish the sum-rate wise optimality of the
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MAC sum-rate in some sub-regions of the mixed interference
region.

We describe these results for the X channel (for simplicity),
i.e., we consider only messages U1, U2, W1, and W2. The
addition of common messages in the GIN case can be shown
not to improve the sum rate. We discuss only the h1 ≥ 1, 0 ≤
h2 ≤ 1 case. Similar results can be shown for the h2 ≥ 1, 0 ≤
h1 ≤ 1 case as well.

Theorem 4: The sum capacity is achieved for the following
three sub-regions of the mixed interference region.

1) h1h2 = 1
2) h2

1 ≥ 1 + P2, 0 ≤ h2 ≤ 1
3) h2

2 ≤ 1
1+h2

1P1
, h1 ≥ 1

Proof:
1) h1h2 = 1: Multiplying the second equation in (3) by h2

and using h1h2 = 1, we get

h2Y2 = h2X2 + h1h2X1 + h2Z2

= X1 + h2X2 + h2Z2. (8)

h2Z2 has a variance h2
2 ≤ 1 i.e. Rx2 is a better receiver

to even the private messages intended for Rx1 apart
from decoding its own signals. Thus, Y1 is a degraded
version of Y2 or (X1, X2)→ Y2 → Y1 and sum-rate is
maximized by the MAC sum-rate I(X1, X2;Y2).

2) h2
1 ≥ 1+P2, 0 ≤ h2 ≤ 1: This proof is in three parts. (i)

When Rx2 has an appropriately chosen side information
S2, we show that, if U1 is a null message (denoted
U1 = φ), then W2 = φ to achieve sum capacity, i.e.,
the sum capacity is achieved by MAC transmission to
Rx2. (ii) Then, we show that U1 = φ by showing that
U1 is decodable at Rx2 making use of S2. (iii) Finally,
we show that side information S2 is redundant and not
required to maximize the sum-capacity.
(i) Assume that U1 = φ,RU1 = 0, i.e. X1 = f1(W1) .

nS =n(RU1 +RW1 +RU2 +RW2)
=n(RW1 +RU2 +RW2)
=h(W1) + n(RU2 +RW2)
=I(W1;Y n2 , S

n
2 ) + h(W1|Y n2 , Sn2 ) + n(RU2 +RW2)

(a)

≤ I(W1;Y n2 , S
n
2 ) + nε+ n(RU2 +RW2)

(b)

≤I(Xn
1 ;Y n2 , S

n
2 ) + nε+ n(RU2 +RW2)

(c)

≤I(Xn
1 ;Y n2 , S

n
2 ) + min

ρ
I(Xn

2 ;Y n1 , Y
n
2 , S

n
2 |Xn

1 ) + nε

=I(Xn
1 ;Y n2 , S

n
2 ) + I(Xn

2 ;Y n2 , S
n
2 |Xn

1 )
+ min

ρ
I(Xn

2 ;Y n1 |Xn
1 , Y

n
2 , S

n
2 ) + nε

(d)

≤I(Xn
1 ;Y n2 , S

n
2 ) + I(Xn

2 ;Y n2 , S
n
2 |Xn

1 )
+ min

ρ
I(Xn

2 ;Y n1 |Xn
1 , Y

n
2 ) + nε

(e)
=I(Xn

1 , X
n
2 ;Y n2 , S

n
2 ) + nε

(a) follows from Fano’s inequality, (b) follows from Xn
1

being a deterministic function of W1, (c) is obtained
as a valid outerbound for RU2 + RW2 by decoding

U2,W2 with receiver cooperation with X1 known. Since
the capacity depends only the marginal distributions
p(yi/x1, x2), any correlation between Z1, Z2 does not
affect the capacity i.e. the minimizing over the cor-
relation ρ is a valid outerbound. (d) follows from
conditioning reduces entropy, (e) follows from ρ = h2

being the minimizer. Note that choosing ρ = h2 requires
0 ≤ h2 ≤ 1. The minimization with respect to ρ is
explained below.

I(Xn
2 ;Y n1 |Y n2 , Xn

1 )
= h(Y n1 |Y n2 , Xn

1 )− h(Y n1 |Y n2 , Xn
1 , X

n
2 )

= h(Y n1 |Y n2 , Xn
1 )− h(Zn1 |Zn2 )

= h(h2X
n
2 + Zn1 |Xn

2 + Zn2 )− h(Zn1 |Zn2 )
(g)

≤ nh(h2X2G + Z1|X2G + Z2)− nh(Z1|Z2)
= nI(X2G;h2X2G + Z1|X2G + Z2)
= nI(X2G;X2G + Z1/h2|X2G + Z2) (9)

where XiG ∼ N(0, Pi). (g) follows from Lemma 1
in [2] and the assumption we make that E[z1iz2j ] =
0,∀i 6= j and E[z1iz2j ] = ρ, i = j. Remember
that Zis are already i.i.d in the GIN model. Lemma
8 in [2] says that when X,N1, N2 are Gaussian with
X being independent of the two zero-mean random
variables N1, N2 then I(X;X+N1|X+N2) = 0 when
E[N1N2] = E[N2

2 ]. Thus, equation (9) reduces to 0
when ρ

h2
= 1⇒ ρ = h2.

(ii) Whenever U1 is decodable at Rx2, U1 = φ
(without loss of sum-rate). Consider S2 = B2G − X2

where B2G ∼ N (0, P2) and independent of X1. If
I(X1;Y2, S2) ≥ I(X1;Y1|X2) for all distributions
f(x1)f(x2) for X1, X2, then X1, including U1, is
completely decodable from {Y2, S2}. Since X1 is in-
dependent of S2, we have

I(X1;Y2, S2) = I(X1;S2) + I(X1;Y2|S2)
= I(X1;Y2|S2) = h(Y2|S2)− h(Y2|S2, X1)
= h(h1X1 +X2 + Z2|B2G −X2)
− h(X2 + Z2|B2G −X2, X1)
(h)
= h(h1X1 +B2G + Z2|B2G −X2)
− h(B2G + Z2|B2G −X2)

= I(X1; Ŷ2|S2) = h(X1|S2)− h(X1|Ŷ2, S2)

= h(X1)− h(X1|Ŷ2, S2)

≥ h(X1)− h(X1|Ŷ2) = I(X1; Ŷ2)

where Ŷ2 = h1X1 +B2G+Z2. (h) follows from adding
B2G − X2 and independence of X1 from other terms.
Thus, I(X1;Y2, S2) ≥ I(X1; Ŷ2).
Since h2

1 ≥ 1 + P2,

Var
(
B2G + Z2

h1

)
≤ Var(Z1) = 1

Therefore, I(X1; Ŷ2) ≥ I(X1;Y1|X2) because (a) we
can add independent gaussian noise of appropriate vari-
ance to Ŷ2 such that total noise variance is 1 and (b) use
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data processing inequality. Combining the two results,

I(X1;Y2, S2) ≥ I(X1; Ŷ2) ≥ I(X1;Y1|X2) (10)

(iii) Now,

nS ≤ I(Xn
1 , X

n
2 ;Y n2 , S

n
2 )

= I(Xn
2 ;Y n2 , S

n
2 ) + I(Xn

1 ;Y n2 , S
n
2 |Xn

2 )
(i)
= I(Xn

2 ;Y n2 ) + I(Xn
2 ;Sn2 |Y n2 ) + I(Xn

1 ;Y n2 |Xn
2 )

= I(Xn
1 , X

n
2 ;Y n2 ) + I(Xn

2 ;Sn2 |Y n2 )

(i) follows from I(Xn
1 ;Sn2 |Xn

2 , Y
n
2 ) = 0 since X1 is

independent of S2 given X2, Y2.

I(Xn
2 ;Sn2 |Y n2 ) = h(Sn2 |Y n2 )− h(Bn2G −Xn

2 |Y n2 , Xn
2 )

= h(Sn2 + Y n2 |Y n2 )− h(Bn2G|Y n2 , Xn
2 )

= h(Ŷ2
n
|Y n2 )− h(Bn2G|Xn

2 )
≤ h(h1X

n
1 +Bn2G + Zn2 |h1X

n
1 +Xn

2 + Zn2 )
(j)

≤ nh(h1X1G +B2G + Z2|h1X1G +X2G + Z2)
(k)
= 0

where XiG ∼ N(0, Pi). (j) follows from Lemma 1
in [2] and (k) follows from the freedom to choose
B2G since it is only a side information and we choose
ρB2GX2G

= 1. Thus we have

nS ≤ I(Xn
1 , X

n
2 ;Y n2 ) (11)

≤ nI(X1G, X2G;Y2G) (12)

where Y2G is Y2 with X1, X2 being Gaussian distributed
i.e. Y2G = X2G + h1X1G + Z2. The above follows
from gaussian input optimality for gaussian MAC. The
proof extends from X channel to the GIN directly since
common messages alone (with U1,W2 = φ) reaching
Rx1 do not improve the overall sum-rate.

3) h2
2 ≤ 1

1+h2
1P1

, h1 ≥ 1: As in the previous case, this proof
is also in three parts. Since it follows similar argumants,
we point out only the differences here. (i) With side
information S2 at Y2, we can show that if W2 is a null
message (denoted W2 = φ), then U1 = φ to achieve
sum capacity, i.e., the sum capacity is achieved by MAC
transmission to Rx2. (ii) Then, we can show that W2 =
φ by showing that W2 is decodable at Rx2. (iii) Finally,
we can show that S2 does not contribute to improving
sum-rate and hence redundant.
(i): On similar lines as in previous case, we have

nS = n(RU1 +RW1 +RU2)
≤ I(U2;Y n2 , S

n
2 ) + nε+ n(RU1 +RW1)

≤ I(Xn
2 ;Y n2 , S

n
2 ) + nε

+ min
ρ
I(Xn

1 ;Y n1 , Y
n
2 , S

n
2 |Xn

2 )

≤ I(Xn
1 , X

n
2 ;Y n2 , S

n
2 )

+ min
ρ
I(Xn

1 ;Y n1 |Y n2 , Xn
2 ) + nε

(l)
= I(Xn

1 , X
n
2 ;Y n2 , S

n
2 ) + nε

(l) follows from ρ = 1/h1 being the minimizer, and
hence 0 ≤ ρ = 1/h1 ≤ 1. The minimization with
respect to ρ is very similar to previous case.
(ii): We can show I(X2;Y2, S2) ≥ I(X2;Y1|X1) for
all distributions f(x1)f(x2) on X1, X2 with S2 =
h1B1G − h1X1. Therefore, X2, including W2, is com-
pletely decodable from Y2.
(iii) Then, we can prove that nS ≤ nI(X1G, X2G;Y2G)
by using Var

(
Z1
h2

)
= 1

h2
2
≥ h2

1P1 + 1 =
Var (h1X1 + Z2). Finally, we can show that S2 does
not improve the sum-rate choosing ρB1GX1 = 1.

Similar results for the other mixed interference region h1 ≤
1, h2 ≥ 1 can be obtained the same way. In summary, we
have 5 channel conditions (in the mixed interference region)
under which the sum-capacity is achieved by just 2 of the 6
messages. This partly addresses a question in [9] regarding
the possibility of sufficiency of 2 messages for sum-capacity
in regions other than some low interference and very high
interference regions.

VII. CONCLUSIONS

Using an achievable rate region similar to the Han-
Kobayashi region, we obtain an achievable sum rate for a 2
× 2 GIN. We determine that at most 4 (out of 6) messages
are sufficient for maximizing the sum rate within this rate
region for all channel conditions. Also, in no case is more
than one private message transmitted from any transmitter.
It is also observed that 2 messages are sufficient in several
cases – mixed interference, and sub-regions of low and very
strong interference regions. We also show that sum capacity
is achieved using only 2 messages for a subset of the mixed
interference conditions. In this case, MAC transmission to one
of the receivers achieves sum capacity.

APPENDIX A
PROOF OF THEOREM 1

We know S = RU1 + RV1 + RW1 + RU2 + RV2 + RW2 is
the sum of 6 different rates. The rate region constraints are
constraints on the sum of 1 or 2 or 3 or 4 of these rates.
The 15 constraints at each receiver comprise of 4 single rate
constraints, 6 on sum of 2 rates, 4 on sum of 3 rates and one
on the sum of 4 rates. In order to obtain a bound on S, we can
choose 2 or more constraints from the 30 available constraints
appropriately.

First, we observe that only one constraint needs to be chosen
from each group of 15 constraints (i.e. for each receiver). This
is because:
• The messages are independent given Q by assumption.
• If more than one constraint is chosen from the same group

(corresponding to the same receiver), a single tighter
constraint can be obtained in the following manner. If
2 constraints are chosen from equation (1) corresponding
to 2 disjoint subsets C1 and C2 of M1, we get the sum
constraint I(C1;Y1|C̄1, Q) + I(C2;Y1|C̄2, Q). However,
I(C1

⋃
C2;Y1|C1

⋃
C2, Q) is a tighter bound (due to the
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independent messages assumption) and is also one of the
15 constraints.

Now, there are only 4 possible combinations of 2 constraints
with one from each group of 15 constraints. These are the 4
stated bounds T1, T2, T3, and T4 in the theorem. A similar
approach is also used in [5] for reducing the number of sum
constraints in an interference channel setting.

APPENDIX B
PROOF OF THEOREM 2

In order to prove statement (1), it is sufficient to show that
any one of the Ti’s is less than or equal to C(h2

1P1 + P2).
This is because (i) any bound on a Ti is also a bound on S,
and (ii) we know that C(h2

1P1 + P2) can be achieved using
messages U2 and W1 alone.

We can show that T1 ≤ C(h2
1P1 + P2) for any αi, βi, γi

and 0 ≤ h2 ≤ 1, h1 ≥ 1. Proving T1 ≤ C(h2
1P1 + P2) can

be shown (using the monotonicity of the log function) to be
equivalent to showing

1 + α1P1 + γ1P1 + h2
2α2P2 + h2

2γ2P2

(1 + γ1P1 + h2
2α2P2)(1 + γ2P2 + h2

1α1P1)
≤ 1.

This is the same as showing

α1P1 + h2
2γ2P2 ≤ (h2

1α1P1 + γ2P2)(1 + γ1P1 + h2
2α2P2).

This condition is true for 0 ≤ h2 ≤ 1, h1 ≥ 1.

APPENDIX C
PROOF OF THEOREM 3

Comparison of t1 and t
′

1:

t
′

1 = C

(
α1P1

1 + h2
2α2P2

)
+ C

(
P2 + h2

1ᾱ1P1

1 + h2
1α1P1

)
Proving t1 ≤ t

′

1 can be shown (using the monotonicity of the
log function) to be equivalent to showing

A1 + γ1P1 + h2
2γ2P2

(A2 + γ1P1)(A3 + γ2P2)
≤ A1

A2A3
,

where A1 = 1 + α1P1 + h2
2α2P2, A2 = 1 + h2

2α2P2, and
A3 = 1 + h2

1α1P1. Equivalently, we need to show

A2A3(γ1P1+h2
2γ2P2) ≤ γ1P1A1A3+γ2P2A1A2+γ1P1γ2P2A1.

This is shown by comparing the first 2 terms using: (a) A1 ≥
A2, (b) A1 ≥ A3 when 0 ≤ h1 ≤ 1, and (c) 0 ≤ h2 ≤ 1.
Comparison of t2 and t

′

2: This is similar to the comparison of
t1 and t

′

1 expect that the indices 1 and 2 are interchanged in
the expressions for t2 and t

′

2 when compared with t1 and t
′

1.
Comparison of t3 and t

′

3:

t
′

3 = C

(
α1P1 + h2

2ᾱ2P2

1 + h2
2α2P2

)
+ C

(
α2P2 + h2

1ᾱ1P1

1 + h2
1α1P1

)
Clearly, t3 is always less than or equal to t

′

3 since only
denominator is reduced (by setting γ1 = γ2 = 0) in both
the arguments for C(.) in t

′

3.
Comparison of t4 and t

′

4:

t
′

4 = C

(
P1

1 + h2
2α2P2

)
+ C

(
P2

1 + h2
1α1P1

)
.

Proving t4 ≤ t
′

4 can be shown (using the monotonicity of the
log function) to be equivalent to showing(

A1 + h2
2γ2P2

A2 + γ2P2

)(
A3 + h2

1γ1P1

A4 + γ1P1

)
≤ A1

A2
.
A3

A4
,

where A1 = 1 + P1 + h2
2α2P2, A2 = 1 + h2

2α2P2, A3 =
1 + P2 + h2

1α1P1, and A4 = 1 + h2
1α1P1. This is true for

0 ≤ h1, h2 ≤ 1.
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