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Abstract-We consider the problem of distributed resource 
allocation in a single-hop wireless network under the SINR 
model. The network consists of fixed transmitters and their 
distinct receivers, and the physical layer model we consider is 
the SINR threshold model, where the transmitter will be able to 
send data successfully to its receiver at a fixed rate if the SINR 
at the receiver is greater than a given threshold. We address the 
problem of joint power control and link activation in a distributed 
setting, in order to stably support any traffic arrival process 
whose rate vector lies inside the capacity region. One of the 
technical contributions of this paper is in identifying a linear 
program to determine the optimal durations for employing each 
activation, whose solution decouples into a distributed algorithm, 
upon introducing a logarithmic barrier function. 

I. INTRODUCTION 

In the context of communication networks, link scheduling 
for maximum throughput is a well studied problem. Maximum 
weight scheduling, first proposed in [12], [13], forms the basis 
for much of the literature on this topic. Despite being capable 
of supporting the largest possible set of arrival rates in a 
constrained queueing network, maximum weight scheduling 
suffers from some drawbacks when it comes to practical 
implementation. Besides being NP-hard, the maximum weight 
schedule requires global knowledge of the queue length infor­
mation, which necessitates a centralised network controller. 
Distributed resource allocation algorithms are preferable in ad­
hoc networks, from the points of view of operational simplicity 
and robustness. 

Distributed and greedy scheduling approaches were pro­
posed in [2], [5] and [14]. However, these greedy algorithms 
are not throughput optimal in general. In a series of recent 
papers [7], [lO], [11], adaptive CSMA (carrier sense multiple 
access) based distributed algorithms have been proposed, and 
shown to achieve maximum throughput for a conflict graph 

based interference model. Their framework was a reversible 
Markov chain based approach that samples independent sets of 
the network randomly according to a product form distribution. 
The algorithm adjusts the parameters of the distribution to 
ensure that the time average service rate of all users exceeds 
their average arrival rate. 

A conflict graph based interference model, in which two 
users either completely interfere with each other or don't 
interfere at all, irrespective of the transmission status of other 
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users in the network is too simplistic to capture the complex 
nature of wireless interference. More specifically, conflict 
graph based interference models ignore (a) the problem of 
power allocation for a user, (b) the fact that whether or not 
two links interfere with each other depends on the transmission 
power of other users and their spatial location in the network, 
and (c) the fact that the interference between two users can 
be asymmetric. 

In this paper, we consider the problem of distributed re­
source allocation under an SINR threshold based interference 
model. In this setting, the receiver will be able to decode 
data sent by the transmitter, if the SINR exceeds a predefined 
threshold (3. Hence, the transmission rate is either 1 or 0, 
depending on whether the SINR threshold is exceeded or not. 

Resource allocation algorithms under the SINR model can 
be categorized under three frameworks, depending on whether 
the algorithm employs only power control, only scheduling, 

or joint power control and scheduling. In a setting where 
only power control is used, the users share the channel by 
limiting the transmission power so that they do not cause more 
than necessary interference to other users, while maintaining 
their threshold SINR requirements. In a setting where only 
scheduling is used, the users share the channel in time between 
some subsets of users with users transmitting at the same fixed 
power in the active state, and meeting the threshold SINR 
requirements whenever they are active. In the most general 
case of joint power control and scheduling, the users share 
the channel in time between some subsets of users, while 
simultaneously tuning their transmission powers depending 
on the particular set of active users in order to meet the 
SINR requirements. We mention some related papers that 
have addressed resource allocation under the SINR model. 
In [15], a distributed algorithm was proposed for the SINR 
threshold model under scheduling. In [3], the authors propose 
a distributed throughput optimal algorithm under scheduling, 
for an SINR adaptation model, where the rate on each link is 
a concave function of the SINR. In [8], the authors propose 
a distributed algorithm which was shown to be throughput 
optimal for the SINR adaptation model, under joint power 
control and scheduling. However this algorithm requires the 
users to exchange control information, and is therefore not 
strictly distributed. 

In this paper, we propose a throughput optimal distributed 
algorithm for the SINR threshold model under joint power 
control and scheduling. Our algorithm proceeds in four phases. 
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The first phase uniquely indexes the links, while the second 
phase identifies all the feasible link activation vectors, and 
determines the power allocation to each link for each feasible 
activation. Here, we adopt a distributed power allocation 
algorithm from [6], and show that either the powers converge if 
the particular link activation is feasible, or become unbounded 
if the activation is infeasible. In the third phase, the feasible 
activations are uniquely indexed. In the fourth phase, the links 
determine the optimal duration of time each feasible activation 
is employed, by solving a distributed optimization problem. 
Indeed, the optimization problem that determines the optimal 
durations for employing each activation is a simple linear 
program (LP). However, this linear program is not amenable 
to a distributed solution. 

One of the main technical contributions of this paper is 
in proposing a distributed gradient descent algorithm, which 
approximates the optimal solution to the above LP to arbitrary 
precision. Indeed, from the constrained LP, we formulate an 
unconstrained convex program by introducing a logarithmic 
barrier function parameterized by a small but positive penalty 
factor e. The optimal solution to the unconstrained convex 
program can be shown to converge to the optimal solution 
to the original LP as e -I- O. In the unconstrained problem, 
we show that the gradients can be computed locally by each 
link, and hence each link can update the activation durations 
in a distributed fashion. By slowly reducing the value of e in 
the distributed gradient descent, we obtain convergence to the 
optimal solution to the original LP. Thus, the links obtain the 
optimal durations for employing each feasible link activation. 
We believe the above approach could be of independent 
interest in solving a certain LPs in a distributed fashion. 

II. NETWORK MODEL 

We consider a network consisting of N distinct transmitter­
receiver node pairs or N distinct links. The locations of the 
nodes are fixed. The term network configuration will denote 
the location of the different transmitters and receivers. Let 
Pi denote the transmit power of the ith transmitter. For 
all i E {I, 2, . . .  , N}, Pi satisfies the condition Pi E P, 
where P is the power constraint set. The power vector is 
P = [PI, P2, ... , PN]T. Let gij , i,j E {I, 2, . . .  , N} denote 
the power gain in the channel between the lh transmitter and 
ith receiver. The interference power Ii at the receiver of link N 
i is given by Ii = L Pj gij ' Let No be the additive 

j=l,#i 
Gaussian noise power at each receiver. Then, SINRdP]' the 
SINR at the receiver of link i when power vector P is used, 
is given by 

Pi gii SINRi [P] = --------'N=------
No + L Pj gij 

j=l,#i 

(1) 

Define an N x N link gain matrix G such that G(i,j), 
the (i,j)th entry in G, is gij,'Vi,j E {I,2, . . .  ,N}. We will 
assume that the matrix G is a full rank matrix. Define another 
N x N matrix Z, called the normalized link gain matrix, such 

that Z(i,j), the (i,j)th entry in Z is Zij = 
gij , 'Vi,j E 
gii 

{I, 2, . . .  , N}. Note that both Z and G are positive matrices. 
Time is slotted, and we assume an ergodic arrival process 

with arrival rate vector A = [AI, A2, ... , AN]T units, where 
Ai is the arrival rate to the transmitter of link i. We assume 
that every transmitter i knows its own arrival rate Ai. We also 
assume that the arrivals during each slot is upper bounded by 
a finite constant, for all links. The time average service rate of 
link i is denoted as Si . The transmission rate of a link depends 
on all the entries of the power vector through the SINR. The 
exact relation between the two depends on the specific model 
under consideration. Let RatedP] denote the transmission rate 
of link i when power vector P is used. For the SINR threshold 
model, RatedP] is given by 

RatedP] = { � SINRi [P] � /3 
SINRd P] < /3 ' 

where /3 is called the threshold SINR. 

III. SINR THRESHOLD MODEL 

(2) 

In this section, we first analyze the feasibility of satisfying 
the SINR constraints of all links in the network simultaneously. 
When this is not feasible, it may be possible to satisfy the 
SINR constraints for a subset of links called an activation set. 
When the SINR constraints can be satisfied for an activation 
set, we will call the activation set feasible. An arrival process 
could be served by optimally time-sharing such feasible acti­
vation sets. We define the set of all possible activation sets and 
discuss the feasibility of satisfying the SINR constraints for 
each such activation set. We observe that the Foschini-Miljanic 
power control algorithm (FM-PCA) [6] can be used to find 
the power vector for feasible activation sets in a distributed 

manner. Finally, we show how the FM-PCA algorithm can 
also be used to identify if an activation set is not feasible. 

A. Feasibility 

A threshold SINR of /3 is feasible for the network if there 
exists a power vector that can simultaneously achieve the 
SINR constraint for all the links. This feasibility problem 
has been studied in [17] assuming that No = 0, i.e., there 
is no receiver noise. For this network of interfering links, 
there exists a maximum balanced signal to interference ratio 
(SIR) denoted as /30. This /30, the maximum common value 
of SIR for all links that can be attained by using any power 

1 vector P ,  is given by /30 = -1 --' where ",1 is the '" - 1  
dominant eigenvalue of the normanzed link gain matrix Z, 
i.e., 1",11 > I"'�I , 'Vi E {2, 3, ... , N}, and "'1, "'1, ... , "'� are 
the N eigenvalues of the matrix Z [17]. Since Z is a matrix 
with positive entries, it is known that the dominant eigenvalue 
",1 is real, and that ",1 > 1 [17]. Let J1, J�, ... , Jf be the N 
eigenvectors of Z corresponding to eigenvalues "'1, "'1, ... , "'� 
respectively. The power vector that achieves this maximum 
balanced SIR (/30) is the eigenvector J1 corresponding to the 
eigenvalue "'1. 



The SINR is upper bounded by the SIR and approaches the 
SIR when the additive receiver noise becomes insignificant 
compared to the interference. Therefore, the maximum feasible 
SINR threshold is also (30, i.e., (3 ;::: (30 is infeasible. In the rest 
of the paper, we will assume that active transmitters can use 
any positive power or in other words that the power constraint 
set P = (0, 00). We remark that this assumption would only 
mean that the additive receiver noise (No )  is sufficiently low 
when compared with the maximum transmission power limit 
for the links. 

Next, we derive another SINR feasibility condition. In order 
to do this, we will rewrite the SINR requirements for all 
users as a single linear matrix inequality. In order to maintain 
successful transmission for all the links, we need to find a 
power vector P that satisfies 

SINRdP] ;::: (3 ,  'Vi E {I, 2, . . .  , N}, 

or, equivalently, 
N 

(3) 

Pigii - L Pj(3 gij;::: (3No, 'Vi E {I, 2, . . .  , N}. (4) 
j=l,#i 

The above N constraints can be expressed in matrix form as r gIl 
-�921 

-(3 gNl 

Define an N x N matrix G with entries G(i, i) = gii, 'Vi E 
{ l, 2, . . .  ,N} and G(i,j) = -(3 gij ,'V i,j E { l, 2, ... ,N},i"l­
j, and an N x 1 matrix B = [(3No , (3No ,  . . .  , (3NO]T. Then, 
the above SINR constraints on the power vector can be written 
succinctly as GP ;::: B. 

Among the possible power vectors that satisfy the SINR 
constraint, we define the optimal power vector as the one with 
the smallest h norm, or sum power. Therefore, the optimal 

power vector P* is an optimal point of the following linear 
program (LP). 

N 
min L(P)  = 'L Pi 

i=l 
subject to: G P;::: B ,  P;::: O. 

Theorem 1: 1) The optimal power vector P* satisfies 
GP* = B. 

2) The threshold SINR (3 is feasible if and only if the P* 
satisfying G P* = B also satisfies P* > O. 

Proof Following terminology in [9], we first convert the 
LP into standard form by adding N surplus variables (31 
[(3� , (3& , . . .  (3�]T. Now, the LP can be written as 

N 
min L(P)  = 'L Pi 

i=l 

subject to: [G -I] [ ;, ] = B ,  [ P  (3/];::: O. 

Note that since G was assumed to be a full rank matrix, 

the matrix [G - I] is of rank N. Therefore, to find the 
optimal power vector, it is enough to search over basic feasible 

solutions. The absence of any basic feasible solution will 
indicate that the LP is infeasible [9, Section 2.4]. From the 2N 
variables, a basic solution is obtained by setting N variables to 
be zero and solving the equality constraints for the remaining 
N variables. Now observe that any basic solution having 
Pi = 0, for some i E {I, 2, . . .  , N} cannot be feasible as the 
SINR constraint for the ith link will not be satisfied in that 
case. Therefore, the only basic solution that can be feasible 
corresponds to (3� = 0, 'Vi = 1,2, . . .  , N, i.e., the optimal power 
vector P* satisfies G P* = B. This optimal power vector is 
feasible if and only if P* > O. Hence the result. • 

From the above theorem, we conclude that with an optimal 

power vector of P*, the SINR for all the links is exactly equal 
to (3 .  This is feasible under these two equivalent conditions 
((3 :s; (30) or ( P* > 0). 

B. Activating a subset of links 

When the SINR threshold of (3 is not feasible for the 
network of N links, the SINR threshold could be feasible for 
a sub-network obtained after deactivating some of the links 
by setting their transmit power to zero. The subset of links 
activated is called an activation set. For a network of N links, 
we have 2N - 1 non empty activation sets. Define the set 
E = { O , l}N\( O, 0, . . .  , 0) that will be used to denote the set 
of all non empty activation sets. An element e E E, called an 
activation vector, is a binary vector of length N such that the 
ith component of e, ei is 1 if link i is in this activation set 
and 0 otherwise. We will also refer to e as an activation set 

with elements i E e if and only if ei = l. 
Let pe = [ Pi' , Pi , . . .  , PN] T denote the power vector 

corresponding to the activation vector e. The power vector 
pe , satisfies the following constraint: Pie E P 'Vi E e and 
Pie = 0 'Vi rt e. A feasible activation vector is an activation 

vector e E E such that there exists a power vector pe that 
satisfies SINRdpe] ;::: (3 'Vi E e, i.e., the SINR threshold of 
(3 is attainable for all the links in that activation vector. Let 
pe* denote the optimal power vector (i.e., the one with the 
smallest sum power) for a feasible activation vector. Let Be 
be an N x 1 matrix such that Be(i, 1) = B(i, l) if i E e 

and Be(i, 1) = 0 if i rt e. Then, pe* solves G pe* = Be . 
N 

This system of equations corresponds to n e = 'L1{ei=1} i=l 
constraints. From Theorem 1, an activation vector e E E is 
feasible if and only if pe* satisfies pr > 0 'Vi E e. Also, let 
(38 denote the maximum common SINR that can be attained 
for the links in activation vector e. 

C. Distributed power control in the feasible case ((3 :s; (30) 

When the SINR threshold of (3 is feasible, the Foschini 
Miljanic-Power Control Algorithm (FM-PCA) [6] can be used 
to find the optimal power vector of P* in a distributed manner. 
In FM-PCA, the power Pi of a link i is updated in every time 



slot as: 
/3 

Pi +-- - (1 - E)Pi + E Pi SINRdP] , E E (0,1] . (5) 

Starting from any power vector, the above iteration when 
executed for all the links, was proved to make the power vector 
converge to the optimal power vector P* if the SINR threshold 
of /3 is feasible (/3 < (30)' Note that this algorithm can be used 
for any activation set. 

D. Using FM-PCA to determine infeasibility (/3 > /3 0) 
In this section, we analyze the FM-PCA in the infeasible 

scenario (/3 > (30)' We show that the transmit powers diverge 
and the SINR converges to /3 0 in this scenario. Identifying 
this divergence allows us to determine infeasibility using the 
FM-PCA algorithm. 

We use the SINR expression (1) in (5) to rewrite the 
evolution of the transmit power as ( N ) E/3 E/3lVo 

Pi +-- - (1 - E) Pi + 1 _ E L ZijPj + -.-. . 
. 1 '-4.' gn J= ,J.,-' 

(6) 

In matrix form, the evolution of power vector P can be 
expressed as 

P +-- - (1 - E) A P + C, (7) 

where A is an lV x lV matrix such that A(i, i) = 1, 'Vi, 
A(" ) Z(" ) w··· --L '  d E/3 C '  z,J = C z,J , vZ,J, Z I J, an C = -- IS an 1 - E 

J\T 1 . . h . C(' 1) E/3lVo . 1 2 J\T 1V X matrIx WIt entrIes z, = -- , Z = , , ... , lV. 
gii 

Next, we state (without proof) two lemmas relating the 
eigenvectors and eigenvalues of the matrices Z and A before 
stating the SINR convergence result. 

Lemma 1: The matrices Z and A have the same set of 
eigenvectors. 

Lemma 2: Suppose ,.,;1 is the dominant eigenvalue of Z, 
i.e., 1,.,;11 > I,.,;�I , 'Vi E {2,3, ... ,lV}. Then, ,.,;1 = 1+ c ( 4 -
1) is the dominant eigenvalue for the matrix A, i.e., 1,.,;11 > 
I,.,;�I , 'Vi E {2, 3, ... , lV}. 

Theorem 2: Suppose /3 > /3 0 and E E (0,1). The power 
vector updated according to (7) diverges and the SINR con­
verges to /3 0 , 

Proof" The iteration in (7) is different from the iteration 
in [16] in two ways: (1) the presence of matrix C, and (2) 
matrix A instead of matrix Z. The two lemmas above show 
that the eigenvectors of Z and A are identical and that the 
eigenvector corresponding to the dominant eigenvalue is the 
same for both matrices Z and A. Using these results, a SINR 
convergence result can be obtained for the iteration in (7) as 
in [16]. 

Consider the following iteration obtained from (7) by ig­
noring the matrix C 

P+-- - ( l - E)AP. (8) 

Let P( O) be the initial power vector. Let P( l) , P(2) , . . .  
denote the updated power vectors at times t = 1,2, . . .  using 

the iteration in (7). Starting from the same initial power vector 
P( O) let P( l) , P(2) , ... be the updated power vectors using the 
iteration in (8). As C contains entries that are strictly positive, 
it is clear that for all t = 1,2, . . .  we have P(t) < P(t). 
Therefore, if P(t) diverges, then P(t) also diverges. 

N 
Express the initial power vector P( O) as P( O) = L ph J'A i=l 

in terms of the eigenvectors of the matrix A. Assume P( O) > 
O. Then, P(t) is dominated by the term corresponding to the 
dominant eigenvector J1 ( = J1 from lemmas 1 and 2) for 
large t [16]. We have P(t) --+ P6 (1 - E)t( ,.,;1)t J1, where P6 > 
O. Now, we have 

(1 - E),.,;1 = (1 - E) (1 + �(,.,;1-1)) = 1 - E + E/3
/3 > 1 1 - E 0 

for /3 > /3 0 , Therefore, as t --+ 00, Pi(t) --+ 00, 'Vi E 
{I, 2, ... , lV}, which also implies Pi(t) --+ 00, 'Vi E 
{I, 2, ... , lV}. Hence, in the infeasble scenario, the interference 
power at the receiver of all links grows without bounds. This 
also means that C which depends on the finite receiver noise 
term of lVo becomes negligible for large t. Thus, for large 
values of t, the power vector P(t) that evolves according to 
(7) behaves similar to the evolution according to (8). 

We also note that the power vector is aligned with the 
dominant eigenvector of Z. This is the power vector corre­
sponding to the balanced SIR of /3 0 from [16]. Thus, we have 
SINR --+ /3 0 as t --+ 00. • 

From the above theorem, we observe that when the SINR 
threshold of /3 is not feasible for the network, the SINR for 
all the links converges to /3 0 if the FM-PCA algorithm is used 
to update the power vector. 

IV. RATE STABILITY & CAPACITY REGION 

The notion of stability we consider is rate stability 
[4][Section 7]. According to this notion, if the time average 
service rate for a link i, Si is strictly greater than its time 
average arrival rate Ai, ( Si > Ai) then the queue of transmitter 
i, Qi is rate stable. 

The capacity region consists of all arrival rate vectors 
that can be stabilized by any scheduling algorithm (possibly 
centralized). In order to support an arrival rate vector A for 
a power constraint set P, the following conditions on the 
network configuration need to be satisfied. 

:3 E( f) = {el, e2 , . . .  , eK} � E such that 'V ek E E( f), 
:3 pek such that 

SINRd pek] ?: /3 ,  'Vi E ek , (9) 

pt E P 'Vek E E( f) and 'Vi E ek . (10) 

:3 /-L = [/-L1 ,/-L2 , ... ,/-LKV such that 
K 

Ai = L/-Lk I{e7=1}, 'Vi E {I, 2, ... , lV}, (11) 
k=l 

K 
o � /-Lk < 1, 'Vk E {1,2, ... , K} , and L/-Lk < 1. 

k=l 
(12) 



E( f) is the set of all feasible activation vectors and fJk is 
the fraction of time each of the activation vector ek is used. 
The conditions for an activation set ek to be feasible are given 
by (9) and (10). Conditions (11) through (12) state that the 
arrival rate must lie in the interior of convex combination of 
all feasible activation vectors [12]. 

V. THROUGHPUT OPTIMAL RESOURCE ALLOCATION 

In this section, we derive a distributed throughput optimal 
resource allocation algorithm. As suggested by the charac­
terization of the capacity region in the previous section, the 
resource allocation algorithm consists of a power allocation 

problem, and a link scheduling problem. We will derive 
distributed algorithms to optimally perform power allocation 
as well as link scheduling. 

A. Power Allocation Problem 

The power allocation problem consists of finding the set 
of all feasible activation vectors E( f) = { el, e2 , . . .  , eK}, and k the corresponding power vectors pe that satisfy the SINR 
constraints for all the users simultaneously. However, from 
Theorem 1, the feasibility or infeasibility of an activation 
vector is decided by the optimal power vector peh. Hence, 
by executing FM-PCA for a link i in each activation vector 
e E E, we can determine if the activation vector is feasible or 
not as follows. 

• If power Pi converges to a constant pr , and SINR 
converges to /3, the activation vector e is feasible. 

• If power Pi diverges and SINR converges to /38 < /3, the 
activation vector e is infeasible. 

B. Link Scheduling Problem 

The scheduling problem entails finding the parameters fJ 
that will make the time average service rate for each link 
greater than its time average arrival rate. We first formulate an 
LP whose optimal point will be shown to satisfy this service 
rate requirement, for any arrival rate vector in the capacity 
region. 

Consider the following Linear Program (LP) in variables 
v = [VI, V2 , . . .  , Vk ]T. 

Problem SCHEDULING LP: 
K 

min L(v) = � Vk 
k=1 

subject to: Si � Ai , i = 1 ,2, . . .  , N, 

Vk � 0 , k = 1 ,2, . . .  , K, 
K 

where Si = � Vk I{ek=1} , i = 1 ,2, . . .  , N. 
k=1 ' 

Let v* be the optimal point for the above LP. 
In the above formulation, Vk is the duration of time that the 

feasible activation vector ek E E( f) is used. If the channel is 
never left idle, then we have the following relation between 

K 
the variables fJk and Vb fJk = Vk/ � Vl. The term Si will be 

l=1 

called virtual service rate of link i, and it is related to the 
K 

time average service rate Si as Si = sd � Vl. 
l=1 

Theorem 3: If the arrival rate vector A lies in the interior of 
the capacity region, then at the optimal solution v*, we have 
Si > Ai ,Vi E {l ,2, . . .  ,N}. 

Proof Since the arrival rate vector A lies in the interior of 
the capacity region, there must exist a fJ' = [fJ� , fJ; , . . .  , fJ�] 

K 
that satisfies Ai = �fJ� I{ek=l} ' Vi E {l ,2, . . .  ,N}, and 

k=1 ' 
hence Si = Ai , Vi E {I, 2, . . .  , N}. The point fJ' lies in 
the feasible set of the Linear Program. Now, since v* is the 

K K 
optimal point of the LP, we have � vk ::; � fJ� < 1 .  Also, 

K k=1 k=1 
we have � vk > 0, or else Si � Ai condition cannot be met 

k=1 
for any link i with a strictly positive arrival rate Ai .  

Now, we have at  v*, Si � Ai, Vi E {I, 2, . . .  , N} or  Si 
K 

sd� vl > Si � Ai· • 
l=l 

Theorem 4: Any arrival rate A in the capacity region can 
be supported by using at most N activation vectors. 

Proof As in Theorem 1, we can convert the LP into 
standard form. Then, the result follows from [9, Section 2.4] . •  

C. Distributed solution to SCHEDULING LP 
Unfortunately, the problem SCHEDULING LP cannot be 

solved directly in a distributed manner. In order to find the 
optimal point v* in a distributed manner, we formulate an 
unconstrained convex optimization problem, parametrized by 
a scalar 8 > O. This convex program is an approximation to 
the linear program SCHEDULING LP. The scalar 8 > 0 is 
called the penalty factor and the approximation gets better as 

8 --1. 0. 
Problem BARRIER: 

K N K 
min L(v,8) = l:>k -8l:)og(Si - Ai) -8l:)og(Vk), 

k=l i=l k=l 
K 

where Si = � vkI{ek=l} ' i = l,2, . . .  ,N and 8 > O. 
k=l ' 

Let v* (8) be the solution to the problem BARRIER. From 
[1, Section 11.2.1], we have the relation, 

v* = lim v*(8). 
9-1-0 (13) 

As we show shortly, a key property of the problem BARRIER 
is that its optimal point v* (8) can be obtained in a distributed 
manner. In particular, the gradient of the objective function 
L(v,8) can be computed by individual links, thus enabling 
us to solve the scheduling problem in a distributed manner by 
choosing an appropriately small value for the penalty 8. 

Solving the barrier program using gradient descent 

As the objective function, L(v, 8), in the barrier program is 
a convex function, its optimal point can be reached using gra­
dient descent. The gradient for the objective function L( v, 8) 



is denoted \7 v L(v, 8) and its kth element is given by 

fJ L(v,8)= 1_8�_8� I{ e7=1} k= 1 2  K (14) 
fJ vk v k � s· - A· ' 

, , . . .  , . 
i=1' , 

The gradient descent algorithm for finding the parameters v 
works as follows. Every discrete time slot indexed by t, update 
the parameter v as 

v(t + 1) +- v (t) - a (t) \7 v(t) L(v(t),8), (15) 

where a (t) , t = 1 ,2, . . .  is a sequence such that a (t) > 0, 
00 00 
L: a (t) = 00, L: a (t) 2 < 00. 
t=l k=1 

VI. DISTRIBUTED ALGORITHM 

In this section, we present our distributed algorithm for the 
SINR threshold model under joint power control and schedul­

ing. We assume that there is a feedback channel from the 
receiver to the transmitter that reports the SINR at the receiver 
and that this feedback is instantaneous. We also assume that 
the receiver will be able to detect any infinitesimal change in 
interference in the network. Recall that every transmitter i is 
assumed to know its own arrival rate Ai .  

The distributed algorithm has the following four phases: 
Initialization Phase (IP), Activation Vector and Transmit Power 
Identification Phase (AVTPIP), Activation Vector Indexing 
Phase (AVIP), Data Frame Phase (DFP). 

A. Initialization Phase 

In this phase, the objective is to establish a unique index for 
all the links in the network and also to identify the total number 
of links in the network. We assume that time is divided into 
slots of duration CT. During odd slots, links that have not been 
indexed will transmit with some probability P > O. If there is 
no collision, they get indexed. The other links in the network 
will listen to this transmission and increment the number of 
indexed links. In case of a collision during the odd slot, the 
links involved in the collision will transmit in the next even 
slot to inform other links in the network about the collision. 
This helps the other links to keep track of the number of 
indexed links. There is also an upper limit on the number of 
consecutive idle odd slots W, and all the unindexed links will 
transmit message in the odd slot with probability 1 if there 
have been W - 1  consecutive idle odd slots already. Therefore, 
W consecutive idle odd slots would indicate to the links that 
all links have been indexed and the IP is over. 

Each link i executes the following algorithm. After the 
execution of this algorithm, link i will have a unique index 
given by Link_indexi and all links will know the total number 
of links N. 

Initialization: 
• Number of links that have been indexed index = O. 
• Link i indexed status indexedi = No. 
• No. of consecutive odd idle slots, idle_slots = O. 
• Indicator of collision for link i, collidei = O. 

every time slot t, do 
1) if t is an odd slot 

• if indexedi = No, transmit in this slot with probability 
idle slots + 1 P= -

W 
If transmission has been attempted by link i 
* Update idle_slots = 0, index = index + 1 
* if collision occurs, i.e. , two or more links tried to 

use the channel: 
· Update collidei = 1 ,  index = index - 1 

* if collision did not occur. Indexing is done in the 
current time slot. 
· Update Link_indexi = index, indexedi 

Yes. 
If transmission has not been attempted by link i 
* if channel is Busy. At least one link in the network 

tried to get an index in the current time slot. 
· Update index = index + 1 ,  idle_slots = 0 

* if channel is Idle. 

· Update idle_slots = idle_slots + 1 .  
• if indexedi = Yes 

if channel is Busy. At least one link in the network 
tried to get an index in the current time slot. 
* Update idle_slots = 0, index = index + 1 
if channel is Idle. 

* Update idle_slots = idle_slots + 1 
* if idle_slots = W 

· Set N = index. Exit IP. 
2) if t is an even slot 

• if collidei = 1 (link i encountered a collision in the 
previous odd slot) 

- Transmit, Update collidei = 0 
• if collidei = 0 (link i did not encounter a collision in the 

previous odd slot) 
if channel is Busy 

* Update index = index - 1 .  

B. Activation Vector and Transmit Power Identification Phase 

Let Ei (f) be the set of all feasible activation vectors that 
link i is contained in. In this phase, every link i in the network 
determines Ei (f) and also corresponding the transmission 
power Pie , \:Ie E Ei(f). For mE {0, 1 ,  . . .  ,2N -I}, { mh 
will denote the N length binary equivalent of decimal number 
m. Each link i executes the following algorithm. 

Initialization: 
• m = 2N - 1 ,  activation vector e = { m h. 
• Transmit power of link i, Pi = O. 
• SINR at the receiver of link i SINR;[O] = O. 

every time slot t, do 
1) if t is an odd slot 

• if link i is contained in activation vector e 
Update power Pi as 

(3 
Pi +- ( 1  - E)Pi + EPi 

SINR;[t _ 1]' 



- Transmit with power Pi 
- Update ldt] , SINRdt] from channel 
- if {Ii [t]} has converged: Activation vector e is fea-

sible 
* Update exiti = 1, Pie = Pi, Ei( f) = Ei( f) U e. 
* Update Pi = O. 

- if {ldt]} has not converged, but {SINRdt]} has 
converged: Activation vector e is infeasible 
* Update exiti = 1, Pi = O. 

• if link i is not contained in activation vector e 
- Update ldt] from channel 

2) if t is an even slot 
• if link i is contained in activation vector e 

- Transmit with power Pi 
- if exiti = 0 

* Update ldt] from channel 
* if ldt] is less than ldt -1] 

if SINRi [t -1] ?: (3. Activation vector e is 
feasible 
Update Pie = Pi, Ei ( f) = Ei ( f) U e. 
Update Pi = o. 

if SINRi [t -1] < (3. Activation vector e is 
infeasible 
Update Pi = O. 

* Update m = m -1, e = {mh, SINRdt] = O. 
- if exiti = 1 

* Update exiti = 0 
* Update m = m -1, e = {mh, SINRdt] = O. 

• if link i is not contained in activation vector e 
- Update ldt] from the channel 
- if ldt] is less than ldt -1] 

* Update m = m -1, e = {mh, SINRdt] = O. 
• if m = 0 

- Exit AVTPIP. 

C. Activation Vector Indexing Phase 

In this phase, every link learns the set of all feasible 
activation vectors E( f) and indexes the vectors. Note that each 
link i already knows Ei ( f) from the previous phase. Each link 
i executes the following algorithm. 

Initialization: 
• m = 2N -1, activation vector e = {m h. 
• Set of all feasible activation vectors E( f) = ¢. 

every time slot t, do 
1) if link i is contained in activation vector e 

• if e E Ei ( f): Activation vector e is feasible. 
- Transmit using power Pt 
- Update k = k + 1, ek = e, E( f) = E( f) U { ek}. 

2) if link i is not contained in activation vector e 
• if channel is Busy: (this indicates that activation vector e 

is feasible) 
- Update k = k + 1, ek = e, E( f) = E( f) U { ek}. 

3) Update m = m -1, e = {m h. 
4) if m = 0, set K = k, exit AVIP. 

D. Data Frame Phase 

After the first three phases described earlier, each link i 
is aware of the set E( f) and their corresponding optimal 
power pr corresponding to each of these activation vectors 
e E E( f). Now, they need to determine the parameters 
vic , Vk E {I, 2, . . .  , K}, where vic is the solution to SCHEDUL­
ING LP. Let data frame be the period of time during which 
all the activation vectors e E E( f) are executed once sequen­
tially. In each data frame, one link updates the parameters 
Vb Vk E {I, 2, . . .  , K}, and this will be observed from the 
channel by other links and stored. After N data frames, all the 
links update the parameters based on the updated parameters 
in the previous N data frames. 

Each link i executes the following algorithm. 

Initialization: 
• m=O, J.L= [J.L1,J.L2, . . .  ,J.LK] = [1,1, ... ,1] Si = IEi( f)I· 
• scale_1 = 1, scale_2 = 1, 8 = 80. 

for each data frame m, do 
1) Update m = m + 1. 
2) The index of the link that will update the parameters in 

the current data frame is idx, given by idx = 1 + mod( m -
1,N). 
3) Link i now proceeds to transmit data in the data frame as 
follows: 

1) if Link_indexi = idx: (link i is responsible for updat­
ing the parameter v in the current data frame) 

for each el, e2, . . .  , eK in E( f) 
k 

• Transmit data with power Pie for duration Vb 
where 

Vk = J.Lk - sc:I�_l (1 - � - (S�-�i) 
l{e�=l} I 06) 

• Wait for (J amount of time. 
• Store ukdx = Vk. 

2) if Link_indexi i= idx: (link i is not responsible for 
updating the parameter v in the current data frame) 

for each e1, e2 , ... , eK in E( f) 
• Transmit data with power pl for duration Vk, 

where 

Vk = J.Lk - E1 (1 _ 
8 ) scale_1 J.Lk 

• Observe Vk from the channel. 
• Wait for (J amount of time. 
• Store Ukdx = Vk. 

4) if idx = N: Update J.L as 

(17) 

(18) 



Theorem 5: In the proposed distributed algorithm, v con­
verges to v*. 

Proof Substituting (16) in (18) we have, fLk, the kth 
component of fL, updated after N data frames as 

fLk f- ( 1  - (2) fLk + � (t,fLk 

-SC-:-'=l�-_-1 (1 - ! - (S��i) 
I{e7=1}) ) 

Therefore, we have 

( 
8 N 8 

) 
1 -

fLk 
- 8 (Si - Ai) 

I{e�=l} , 

(19) 

which is nothing but the gradient descent algorithm that min­
imizes the Loss function L(v,8). Therefore, the distributed 
algorithm drives the parameter fL to v*(8) for a fixed 8. If 
8 is decremented sufficiently slowly, it can be shown that 
v* (8) --+ v* as 8 -I-0 as desired. • 

VII. SIMULATIONS 

The proposed distributed algorithm was simulated for a 
network of 5 links. The standard path loss function gij = 

a 'ij -'7 V i, j E {I, 2, . . .  , N} was used. The table below lists 
the different parameters and results of the simulation. Figure 1 
shows the Queue lengths as a function of time for each of the 
links. Note that t = 0 in the plot corresponds to the starting 
point for the DFP. A loading factor of 0.99 was used for the 
simulation. It is clear that the queue lengths stay bounded, 
even for this high loading. 

I Paramo I Value I Paramo I Value I Paramo I Value 
N 5 W 12 M 10 
a 1 'f/ 3 No 10-9 
80 1 E1 0.005 E2 1 

a 10 -4 f3 10 E 0.50 
I Parameter Value I 

I E( J) I {3} {I} {4} {3,4} I {2} {2,3} {5} {4,5} 

VIII. CONCLUSION 

In this paper, we proposed a distributed algorithm that is 
throughput optimal for an SINR threshold model under joint 
power control and scheduling. Our algorithm runs in four 
phases, and determines the feasible activations as well as the 
transmit powers of each link in each feasible activation. We 
posed the problem of determining the optimal durations of 
employing the feasible activations as an LP. A key technical 
component of the work involved solving the LP by introducing 
a logarithmic barrier, upon which the problem decoupled into 
a distributed gradient descent at each link. 
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