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Abstract-We address the problem of simultaneously ensuring 
long-term fairness and deterministic delay guarantees for real
time traffic over a single-hop network. Specifically, we propose a 
network control policy that maximises a concave utility function 
of the average throughput of each flow, while guaranteeing that 
each packet is delivered within a deterministic deadline. Although 
this problem has been addressed in the past, prior work makes 
restrictive assumptions, by allowing only binary packet arrival 
and service processes at each link. The present paper allows for 
any bounded burst size distributions for the arrival and service 
processes. 

I. INTRODUCTION 

In this paper, we tackle the problem of scheduling for 
network utility maximisation in a generic single hop network, 
with deterministic delay constraints for every packet. In par
ticular, each packet has to reach its destination by a certain 
deadline. Packets that do not reach their destination by the 
deadline are useless, and are dropped. Our work is motivated 
by the significant growth of real-time traffic, which demand 
both stringent delay constraints for each packet, as well as a 
satisfactory long-term rate. 

We develop a scheduling mechanism that maximises a 
concave utility function of the long term rates, while ensuring 
that the packets that are scheduled do reach their destination 
before the deadline. The delay bound is guaranteed by tracking 
the waiting time of the head-of-Iine data in all the queues in 
every slot and by making the scheduling decisions based on 
those waiting times. Thus, our policy ensures both long-term 
fairness for competing flows, and the deadline constraints for 
each packet. 

The scheduling problem in wireless networks has been well 
studied for over two decades. Much of the existing literature 
in this area is based on the Lyapunov drift technique for 
provably stable scheduling of a queuing system, which was 
introduced in [1], [2]. Since then, these Lyapunov methods, 
which explicitly take queue lengths into account for making 
scheduling decisions, have been applied in various contexts 
including high-speed switches [3], satellites [4], wireless [5], 
and optical networks [6]. In all these cases, the goal is to 
guarantee stability of the queuing system, whenever the traffic 
is within the stability region. 

In cases when the traffic arrival rate to a network may lie 
outside the stability region, Lyapunov methods have been used 
to obtain joint congestion control and scheduling policies, so 
as to maximise a concave utility function of the long term 
throughputs obtained by each flow [7]-[9]. These papers also 
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propose queue length based allocation rules, and expected 
delay bounds are obtained via corresponding bounds on the 
queue lengths, since the two quantities are simply related 
through Little's law [10]. 

Although expected delay bounds for queue length based 
policies have been known for a while, the increasing impor
tance of real-time traffic has engendered recent interest in 
providing more stringent delay guarantees for every delivered 
packet. An early work which addressed deadline constrained 
scheduling for multiple real-time streams sharing a wireless 
channel is [11]. More recently, in [12], the authors address 
the scheduling problem in the presence of elastic and inelastic 
traffic, and maximise the utility of the elastic traffic while 
ensuring packet delay deadlines for the inelastic traffic. This 
was extended to incorporate heterogenous delay constraints 
in [13]. Scheduling real-time flows over multi-hop networks 
was studied in [14]. Also notable are the papers [15], [16], 
where the authors use Blackwell's approachability theory to 
guarantee certain delay guarantees and delivery ratios for real
time traffic. 

Our present paper is most directly related to [17], where the 
author proposes a delay-based Lyapunov technique to max
imise a network utility function of the long-term throughput, 
while ensuring that each delivered packet meets a determinis
tic deadline constraint. Incidentally, head-of-line delay-based 
scheduling was first introduced in the switching literature [3], 

[18]. Scheduling based on the head-of-Iine delay, as opposed 
to the queue backlog, has the advantage of giving a more 
direct control over the delay. In particular, [17] guarantees a 
deterministic delay guarantee by tracking the waiting time of 
the head-of-Iine packets in all the queues in every slot, and 
making the scheduling decisions based on those waiting times. 

However, the results in [17] hold only under restrictive 
assumptions on the arrival and service processes at each link 
- in particular, when the arrivals are Bernoulli distributed, 
and the service process is binary in each time slot. In this 
paper, we adopt the framework of concavely extended utility 
function from [17], and generalise the results to allow for 
any bounded arrival process and service rate at each link. 
As it turns out, the congestion control, packet drop, and link 
scheduling decisions decouple under the Bernoulli arrivals 
and binary service assumptions made in [17]. However, in 
the more general setting of the present paper, the problem 
is considerably more complex, and the optimal packet drop 
decisions become coupled with the scheduling decisions. 



Further, the general arrival and service processes necessitate 
more elaborate bounding of the Lyapunov drift, which we 
accomplish by identifying a stopping rule, and invoking Wald's 
equality and a second moment bound. In sum, we solve the 
network utility maximisation problem subject to a deadline 
constraint on each delivered packet, under fairly general arrival 
and service processes at each link 

The remainder of this paper is organised as follows. Sec
tion II describes the network model and Section III defines 
the optimisation problem. Section IV derives bounds on the 
Lyapunov drift for general arrival and service processes. The 
optimal control policy is proposed in Section V, and its 
optimality properties are proven. Section VI concludes the 
paper. 

II. NETWORK MODEL 

Consider a time slotted single-hop network with K links 
numbered as {I, 2, . . .  , K}. Data packets arrive randomly 
every slot and are put into separate queues for different 
links. Let Ai(t) be the amount of data arriving at queue i 

during slot t. The arrivals to the network are assumed to 
be i.i.d. over slots and independent over different queues. 
We assume that the amount of data that arrives to each 
queue in one slot is deterministically bounded above, i.e., 
Ai (t) :s; Amax for all i and t. The special case of at most 
one packet arrival to each link per slot was considered in 
[17]. Let � = (AI, A2, '" AK) be the arrival rate vector, where 
Ai = E{Ai(t)}. Let Q(t) = (Q1(t), Q2(t), . . .  , QK(t)) be the 
queue-length vector for the network at the beginning of slot t. 
The packets in the queue are marked with their integer arrival 
times which are then used to determine the waiting time in 
the system. The queue evolution is given by the following 
equation. 

where fJi (t) is the service given to queue i during slot t and 
Di(t) is the amount of data dropped from the ith queue during 
slot t. The link capacities are assumed to be time varying and 
are denoted by C(t) = (C1(t), C2(t), . . .  CK(t)) for the K 
links during slot t. We assume that the capacity of the link 
is upper bounded by Cmax. In [17], each link can transmit at 
most one packet per slot. Let ;!2(t) = (Xl (t), X2(t), . . .  XK(t)) 
be the transmission rate vector during slot t. The service rate 
fJi (t) is given as follows. 

where 1 i (t) is an indicator variable that takes 1 when the 
transmission through link i is successful. At each t, we assume 
that Ii (t) is known to the controller for each i. 

For each queue i, define Yi(t) = Ai - Di(t). Let y be the 
time average expectation of Yi (t) 

1 t 
Y = � - lim - L lE{D(T)}. - t-+oo t 

T=O 

The vector y is the difference between the rate of arrivals 
and the rate of packet drops, and hence it represents the 
throughtput vector provided the queues are stable. 

III. THE OPTIMISATION OBJECTIVE 

As in [17], the goal is to propose a delay-based transmission 
scheme with data dropping that the solves the following 
problem: 

subject to: 

max g(y), 
1!. 

J!.. E A, 

o :s; Yi :s; Ai, V i, 

(1) 

where g(y) is a continuous and concave utility function of 
the K-dimensional vector y, and A is the set of all long-term 
throughput vectors that the- system can support. The function 
is assumed to be defined over the hyper-cube Y = {J!.. I 0 :s; 
Yi :s; Amax Vi}. We make the following additional assumption 
as in [17]. 

Assumption 1 : For each queue i, for any vectors J!.. and :lQ 
such that J!.. E Y, :lQ E Y and J!.. + :lQ E Y we have : 

K 
g(J!.. +:lQ) :s; g(J!..) + L ViWi, (2) 

i=l 

where Vi � 0 V i. Note that (2) is true if, for each i, the 
ith right partial derivative of gO is upper bounded by a finite 
constant Vi. 

Let g* be the maximum value of the objective in the 
problem (1). Our aim is to find a policy which achieves a utility 
close to g* and simultaneously guarantees a deterministic 
delay bound for the non dropped data. 

A. Concave Extension of Utility Function 

Following [17], we define a concave extension of the utility 
function, which plays an important role in bounding the delay. 
Supposing that g(y) satisfies Assumption 1, we define g(J!..) 
over the extended -hyper-cube Y = {y I - Amax :s; Yi :s; 
Amax V i} as a concave extension o(g(J!..) given by, 

K 
g(y) = g(max{J!.., O}) + L Vi min{Yi, O}, 

i=l 

where max{y, O} = (max{Yl, O}, . . .  , max{YK' O}). Since 
(2) holds, we -have the following inequality. 

where y. is formed from Y by replacing Yi by -Amax· 
-t -



B. Equivalent Problem with Virtual Queues 

The optimisation problem (1) can be easily transformed to 
the following problem using an auxillary vector 1:..( t). 

subject to: 

max g(1:..), 
P','l!. 

Yi ?: <Pi V i, 
-Amax :s; <Pi :s; Amax, V i, 

Q < 00, 

where Q and yare achievable on the network and Q 
limsuPH<Xl i t�=o IE{Q(T)}. 

(4) 

We solve the above problem by using the Lyapunov op
timisation technique for stabilising a set of virtual queues 
Z(t) = (Zl(t), Z2(t), . . .  , ZK(t)) with the update equation 
as follows. For the ith queue, 

Stabilising this virtual queues ensures that the first constraint 
in problem (4) is satisfied. Note that the virtual queue update 
equation needs the knowledge of the actual arrival rate vector 
�. In order to incorporate the delay into the resource allocation 
policy, we define Wi (t) as the waiting time of the head-of
line data in the ith queue on slot t. Let Wi(t) = ° if the 
queue i is empty. Let Ni(t) be the amount of head-of-line 
data in the ith queue. Define lQi (t) as an indicator variable 
that is 1 if Qi(t) > 0, and is zero if the queue is empty. 
Define ID, (t) as an indicator random variable which takes a 
value 1 whenever Di(t) > ° and zero otherwise. Let 1 Ai(t) 
be an indicator variable which takes 1 if Ai(t) > ° and zero 
otherwise. Let INi (t) be an indicator variable which takes a 
value 1 if Ni (t) ?: Mi (t) and zero otherwise. We observe that 
Wi (t) satisfies the following update equation. 

Wi(t + 1) =(1 - l Q, (t))IAi(t) 
+IQi (t) max{Wi(t) + 1 - Pi(t), a}, 

(6) 

where Pi (t) represents the time after which the data at the 
head-of-line in the ith queue at the end of slot t (after the 
service during slot t) have arrived with respect to the arrival 
epoch of the head-of-Iine data in the beginning of the slot. We 
can express Pi (t) as follows. 

where 

and 

{ a, ID,(t) = ° & IN,(t) = 1 
Pi(t) = Ti(t), lUi (t) = 1 & INi (t) = 1 , 

Ji(t), IN, (t) = ° 

= (1 -IN,(t))Ji(t) + IN,(t)ID,(t)Ti(t) 

w 

(7) 

Ji(t) = min{w I L Ai(t-Wi(t)+T) > Mi(t)-Ni(t)}. (8) 
r=l 

The update equation of the waiting time of the head-of-line 
data given by (6) can be understood as follows: If the queue 
is empty, the value of Wi (t + 1) is 1 if and only if there is 
a new arrival in the current slot t. Alternatively if the queue 
is non empty, Mi(t) amount of data is served from the queue. 
Now if Mi(t) is less than the amount of head-of-line data in the 
queue (i.e., INi (t) = 1), then the remaining packets are either 
dropped or retained in the queue. If the remaining packets 
are not dropped, then Pi(t) = ° in (7). Hence Wi(t + 1) is 
Wi (t) + 1 in this case. If the remaining packets are dropped, 
then Wi(t + 1) becomes Wi(t) + 1 - Ti(t), i.e., the packet 
which arrived Ti(t) slots after the current head-of-line paket 
will become the new head-of-line packet in the next slot. On 
the other hand, if INi (t) = 0, i.e., the number of serviced 
packets is larger than the number of head-of-line packets, the 
data which arrived Ji (t) slots after the current head-of-line 
data will become the new head-of-line in the next slot which 
makes Wi(t + 1) to be Wi(t) + 1 -Ji(t). 

Without loss of generality, assume that Ai > ° for all the 
queues. We obtain our delay-based scheduling policy using the 
Lyapunov optimisation framework in [7]. 

Define 8(t) [Z(t); W(t); N(t); I(t)], 
where W(t) (W1(t), W2(t), . . .  WK(t)), 
N(t) (N1(t), N2(t), . . .  NK(t)), and I(t) 
(11(t), 12(t), . . .  IK(t)). We consider the following non
negative Lyapunov function: 

1 
K 

1 
K 

L(8(t)) ="2 L Zi(t)2 +"2 L kiWi(t)2, (9) 
i=l i=l 

where ki = 1 - IP'{Ai(t) = o} . The conditional Lyapunov 
drift �(8(t)) is defined as: 

�(8(t)) = IE {L(8(t + 1)) -L(8(t))18(t)} . 

IV. BOUNDING THE DRIFT-MINUS-UTILITY 

The drift-minus-utility expression is given by 

( = �(8(t)) - VIE{g(1:..(t))18(t)}, (10) 

where V is a non-negative control parameter. We first obtain a 
bound on the drift-minus-utility and then minimise the bound 
to arrive at the policy. 

First, we show that IEUi(t)218(t)} is finite in the following 
lemma. 

Lemma 1. In every slot t, for any queue i: 

Proof Every slot t, conditioning on the service Mi(t), 
the random variable Ji (t) can be viewed as a stopping rule 
which depends on i.i.d. arrivals into the queue i. Now we use 
[10, Lemma 1, Section 7.5] which asserts that Ji(t) has all its 
conditional moments to be finite. Hence we have, 

Now by taking the expectation over Mi(t), the lemma follows. 
• 



Further, we have the following lemma relating Pi(t) and 
Ji (t). 

Lemma 2. In every slot t, for any queue i: 

(11) 

Proof Note that Ji(t) becomes 1 whenever 1Ni (t) = 1. 
Hence, whenever 1Ni (t) = 1, irrespective of whether data are 
dropped or not, Pi(t) ?: Ji(t) - 1 = O. Now if 1Ni (t) = 0, 

then Pi(t) = Ji(t) ?: Ji(t) - 1. • 

Now, we obtain bounds on the drift and drift-min us-utility. 

Lemma 3. In every slot t, the Lyapunov drift satisfies: 

K K k(l _ 1 (t))W (t)N(t) 
�(8(t)):s; B1 + L kiWi(t) + L t Ni 

A
' t 

K 

i=1 i=1 t 

- L Zi(t)IE{Yi(t) - ¢i(t)18(t)} 
i=1 

_ 

� ki(l - 1Ni (t))Wi (t)IE{fLi(t) 18(t)} 
� A i=1 t 

K 

- L 1Ni (t)Wi(t)IE{1Di (t)18(t)). 
i=1 

where B1 is a finite positive constant. 

Proof We get the following inequality by squaring (5). 

Zi(t + 1)2 :s; Zi(t)2 + ¢i(t)2 + Yi(t)2 

-2Zi(t)(Yi(t) - ¢i(t)) -2Yi(t)¢i(t) 

Since the arrivals in any slot are bounded, the term Yi(t)2 + 
¢i(t)2 - 2Yi(t)¢i(t) is bounded. Rearranging, sUlmning over 
all the queues, and taking conditional expection, we get 

K 

IE{L(Zi(t + 1)2 - Zi(t)2)18(t)} 
i=1 

K 
(12) 

:s; B� -2 L IE{Zi(t)(Yi(t) - ¢i(t))18(t)}, 
i=1 

where B� is a finite positive constant. Now squaring (6), we 
get the following bound. 

Wi(t + 1)2 :s; 1 + (Wi(t) + 1 -pi(t))2 

= 1 + Wi(t)2 + (1 - Pi(t))2 + 2Wi(t)(1 - Pi(t)) 

Using Lemmas 1 and 2, we can bound IE{(1-pi(t))218(t)} by 
a finite positive constant. Rearranging, summing over all the 
queues, taking conditional expectation, and using Lemma 1, 
we get 

K 

IE{L ki(Wi(t + 1)2 - Wi(t)2)18(t)} 
i=1 

K 

:s;ih + 2 L kiIE{Wi(t)(l -pi(t))18(t)}, 
i=1 

where ih is a finite positive constant. Using 

IE{pi(t)18(t)} = (1 - 1Ni (t))IE{Ji(t)18(t)) 
+ 1Ni(t)IE{lDi(t)18(t)}IE{Ti(t)18(t)}, (13) 

we get 

K 

IE{L ki(Wi(t + 1)2 - Wi(t)2)18(t)} 
i=1 

K K 

:s;ilt + 2 L ki Wi(t) -2 L ki(l - 1Ni (t))Wi(t)IE{Ji(t)18(t)} 

K 

i=1 i=1 

-2 L kilNi (t)IE{lDi (t) 18(t))Wi(t)IE{Ti(t) 18(t)}. 
i=1 

(14) 

In writing (13), we have used the fact that our decision to drop 
1Di (t) is independent of the inter-arrival time Ti(t). 

Next, from equations (12) and (14), we get 

K K 

�(8(t)) :s; B1 + L kiWi(t) - L Zi(t)IE{Yi(t) - ¢i(t)18(t)} 
i=1 i=1 

K 

-L ki(1 - lNi(t))Wi(t)IE{Ji(t)18(t)} 
i=1 
K 

- L kilN; (t) Wi (t)IE{lD; (t) 18(t)}IE{Ti (t) 18(t)}. 
i=1 

(15) 

In every slot t, conditioned on the service fLi (t), the random 
variable Ji(t) can be viewed as a stopping rule which depends 
on the set of independent arrivals to the ith queue. Applying 
Wald's equality [10], we get 

IE{A Ji(t) lfLi(t), 8(t)} = AiIE{Ji(t)lfLi(t), 8(t)}. (16) 

where A Ji(t) = 2::���) Ai(t-Wi(t)+T). Clearly, by definition 
of Ji(t), A J,(t) > fLi(t) - Ni(t). Thus, 

IE{Ji(t)lfLi(t), 8(t)} > 
fLi(t) �i 

Ni(t)
. (17) 

Now taking expectation over fLi (t) we get, 

IE{Ji(t)18(t)} > 
IE{fLi(t)18(t)} - Ni(t)

. (18) 
Ai 

Finally, note that Ti (t) which is an inter-arrival time, is 
geometrically distributed with success parameter ki' so that 

IE [Ti(t) 18(t) 1 = 1/ ki. (19) 

Using (18) and (19) in (15), the lemma follows. • 



Lemma 4. In every slot t, the drift-minus-utility satisfies: 

K K 

( �B1 + L kiWi(t) + L ki(l - lNi(�)Wi(t)Ni(t) 

i=1 i=1 t 

K 

- IE{Vg(t(t)) - L Zi(t)¢i(t)18(t)} 
i=1 

K 

- L Zi(t)IE{Yi(t)18(t)} 
i=1 
K 

- L ki(1 - lN,(t))Wi(t)IE{fLi(t)18(t)} 

i=1 Ai 
K 

- L 1Ni (t)Wi(t)IE{lDi (t) 18(t)}, 
i=1 

where B2 is a finite constant. 

Proof Using the bound for drift in Lemma 3 in (10), we 
obtain the bound for drift-minus-utility. • 

In the next section, we present our delay based scheduling 
policy that chooses the optimal ;r(t) , t(t), and D(t). 

V. PROPOSED RESOURCE ALLOCATION POLICY 

We propose a control policy that minimises the upper bound 
in Lemma 4. Since the first three positive terms cannot be 
controlled, our policy essentially minimises the negative terms, 
which is equivalent to maximising 

K K 

IE{Vg(t(t))-L Zi(t)¢i(t)18(t)}+ L Zi(t)IE{Yi(t)18(t)} 
i=1 i=1 

K 

+ L ki(1 - lNi(t))Wi(t)IE{fLi(t)18(t)} 

i=1 Ai 
K 

+ L 1N,(t)Wi(t)IE{lD,(t)18(t)}. (20) 
i=1 

During slot t, the controller observes 8(t), and implements 
the following policy. 

1) Congestion control step: 

Choose t(t) as the solution to the following problem: 

K 

max Vg(t(t)) - L Zi(t)¢i(t) (21) 
i=1 

subject to -Amax � ¢i(t) � Amax, 'V i. 

2) Transmission rate allocation: 

Choose ;r*(t) as in (23), where 1Ni (t) = 1 if Ni(t) > 

x i(t)l i(t), and 0 otherwise, and 1D; (t) = 1 if 1Ni (t) = 

1 and Wi(t) > Zi(t) (Ni(t) -x i(t)l i(t)) , and 0 other
wise. 

3) Dropping decision: 

If Ni(t) > xi(t)li(t) and 
Zi(t) (Ni(t) -xi(t)l i(t)) , drop the 
packets at link i, for each i = 1, . . .  , K. 

Wi(t) > 

head-of-line 

A. Minimising the drift-min us-utility bound 

Theorem 1. The delay based resource allocation policy given 

above maximises the expression in (20). 

Proof Notice that ¢i (t) appears only in the first expec
tation term in (20). Therefore, they can be optimally chosen 
by maximising the following quantity for a given 8(t): 

K 

Vg(t(t)) - L Zi(t)¢i(t) 
i=1 

subject to -Amax � ¢i(t) � Amax for all queues i. This 
gives the congestion control step of the policy. 

Next, we have to maximise the following quantity by 
optimally choosing the transmission vector ;r( t) and the packet 
drop vector D( t) : 

K 

- L Zi(t)IE{Di(t)18(t)} 
i=1 

K 

+ L ki(1 - lNi(t))Wi(t)IE{fLi(t)18(t)} 

i=1 Ai 
K 

+ L 1N,{t)Wi(t)IE{lD,{t)18(t)}. (22) 
i=1 

In writing the above, we have used Yi(t) = Ai - Di(t). 
Now, let us fix some ;r(t) , and decide the corresponding 

D( t). Since the channel state at slot t is known, fLi (t) = 

Xi  (t) Ii (t) is also known for this fixed ;r( t). This allows us 
to calculate 1Ni (t) also. Observe next that when 1Ni (t) = 0, 

(i.e., when fLi (t) ?: Ni (t) ,), only the first two tems in (22) are 
non-zero. Thus, Di(t) = ° is optimal. In other words, if all 
head-of-line packets can be served during the slot, it is optimal 
to not drop any packets. 

Next, when IN, (t) = 1, the second term in (22) is zero. 
Therefore, we need to maximise 

K 

L Wi(t)IE{lDi (t)18(t)} - Zi(t)IE{Di(t)18(t)}. 
i=1 

If we decide not to drop for some i, we see that the 
corresponding term in the above expression is zero. Thus, 
it makes sense to drop the remaining Ni(t) - fLi(t) head
of-line packets, only if Wi(t) > Zi(t) (Ni(t) - fLi(t)) . To 
sUlmnarise, for a fixed ;r(t) and each i = 1, . . .  , K, we drop 
all Ni (t) -fLi (t) head-of-line packets, if and only if 1 Ni (t) = 1 
and Wi(t) > Zi(t) (Ni(t) - fLi(t)) . This determines the 
optimal drop policy for a given ;r(t). 

The optimal ;r*(t) is now found by back-substituting the 
drop policy in (22), and maximising over all feasible ;r(t). 
That is, 

K 
k ;r*(t) = argmax L [\ t (1 - 1Ni(t))Wi(t)X i(t)l i(t) 

;f(t) i=1 A i 

+ 1Ni (t) Wi (t) 1Di (t) - Zi (t) 1Di (t) (Ni (t) - Xi  (t) Ii (t))] . 
(23) 



Finally, the overall optimal drop decision D* (t) is the optimal 
drop decision corresponding to {£* (t). • 

At this point, we pause briefly to compare with the drop 
decision in [17], where due to i.i.d. Bernoulli arrivals and 
ON/OFF channels, lE{lDi(t)18(t)} = lE{Di(t)18(t)}. There
fore the drop decision in [17] is based on comparing Wi (t) 
with Zi (t), which is what our policy simplifies to, for the 
special case of Bernoulli arrivals and ON/OFF channels. 

B. Delay bound 

The following lemma is useful to prove that the delay is 
deterministically bounded. 

Lemma S. If Zi (t) > V Vi for a particular slot and queue i, 

then the congestion control step in the above policy chooses 

¢i(t) = -Amax for that slot. 

Proof" The proof is similar to [17, Lemma 3]. By (3), we 
know that for any vector 1!..( t) such that -Amax :s; ¢i (t) :s; 
Amax, 

K 

V!;(1!..(t)) - L Zm(t)¢m(t) 
m=l 

K 

:s; V!;(1!../t)) + VVi(¢i(t) + Amax) - L Zm(t)¢m(t) 
m=l 

Because VVi < Zi(t), the upper bound is maximised at 
¢i(t) = -Amax and equality holds if and only if ¢i(t) 
-Amax· • 

Theorem 2. The proposed resource allocation policy ensures 

a deterministic bound on both the virtual queue size and the 

delay of the head-of-line data in every queue in every slot. 
More precisely, for any queue i, 

Zi(t) :s; IVVil+2Amax and Wi(t) :s; Amax(lVVil+2Amax). 
(24) 

Proof" Consider the ith queue. At t = 0, when the queues 
are empty, clearly, Zi(O) :s; IVVil + 2Amax and Wi(O) :s; 
Amax(lVVil + 2Amax). Hence the theorem holds for t = O. 
We use this as the basis for the following proof by induction. 
We assume that (24) holds for given t. 

From (5) we have, 

Zi(t + 1) :s; Zi(t) + Di(t) + ¢i(t) :s; Zi(t) + 2Amax· 

If Zi(t) :s; IVVil, then Zi(t + 1) :s; IVVil + 2Amax. Now if 
Zi(t) > IVVil, ¢i(t) = -Amax (by Lemma 5), Di(t) :s; 
Amax, and hence Zi(t + 1) :s; Zi(t) :s; IVVil + 2Amax· 
Therefore, by induction, Zi(t) is bounded above as in (24). 

Similarly, from (6), we have 

Wi(t + 1) :s; Wi(t) + l. 

If Wi(t) :s; Amax(lVvil + 2Amax) - 1, then Wi(t + 1) < 

Amax(lVVil + 2Amax). Now if Wi(t) > Amax(lVVil + 
2Amax) - 1, then Wi(t) = Amax(lVVil + 2Amax), which 
makes Wi(t) ;::: Zi(t)Amax ;::: Zi(t)(Ni(t) - x i(t)li(t)). 
Therefore, the head-of-line data will be completely drained off 

(either by successful transmission or by dropping). Therefore, 
Wi (t + 1) :s; Wi (t) :s; Amax ( IV Vi l + 2Amax)· By induction, 
the theorem holds for all t. • 

C. Utility gap 

Theorem 3. The proposed resource allocation policy ensures 

the delay of all non-dropped data to be less than or equal to 
D slots, with total throughput-utility that differs from optimal 

by 0(1/ D). 

Proof" Theorem 2 shows that the delay of any suc
cessfully transmitted packet in the ith queue is bounded by 
Amax (IV Vi l + 2Amax) slots. Hence, by choosing V such that 
D = Amax(lVvmax l + 2Amax), where Vmax = maXi Vi, the 
delay of any successfully transmitted packet can be determin
istically bounded by D slots. 

The loss in utility can be shown to be 0(1/ D) following the 
proof in [17, Theorem 1] using the following observations: (1) 
the proposed policy minimises the bound on drift-minus-utility 
as required, and (2) the virtual queue is also deterministically 
bounded. • 

VI. CONCLUDING REMARKS 

We addressed the problem of maximising a concave utility 
function of long term throughput, subject to deterministic 
delay guarantees on each dellivered packet. Extending prior 
work, we allow for any bounded burst distributions for packet 
arrivals as well as service processes at each link. Introducing 
non-binary arrival and service processes made the problem 
considerably harder, and necessitated more careful bounding 
of the Lyapunov drift. 
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