
Efficient VLSI Architectures for Baseband Signal Processing in
Wireless Base-Station Receivers�

Sridhar Rajagopal Srikrishna Bhashyam Joseph R. Cavallaro Behnaam Aazhang
Rice University

Center for Multimedia Communication
Department of Electrical and Computer Engineering MS-366

6100 Main St., Houston, TX 77005-1892.
fsridhar,skrishna,cavallar,aazg@rice.edu

Abstract

A real-time VLSI architecture is designed for multiuser channel estimation, one of the core base-
band processing operations in wireless base-station receivers. Future wireless base-station re-
ceivers will need to use sophisticated algorithms to support extremely high data rates and multime-
dia. Current DSP architectures are unable to fully exploit the parallelism and bit level arithmetic
present in these algorithms. These features can be revealed and efficiently implemented by task
partitioning the algorithms for a VLSI solution. We modify the channel estimation algorithm for a
reduced complexity fixed-point hardware implementation. We show the complexity and hardware
required for three different area-time tradeoffs: an area-constrained, a time-constrained and an
area-time efficient architecture. The area-constrained architecture achieves low data rates with
minimum hardware, which may be used in pico-cell base-stations. The time-constrained solution
exploits the entire available parallelism and determines the maximum theoretical data rates. The
area-time efficient architecture meets real-time requirements with minimum area overhead. The
orders-of-magnitude difference between area and time constrained solutions reveals significant in-
herent parallelism in the algorithm. All proposed VLSI solutions exhibit better time performance
than a previous DSP implementation.

1. Introduction

Next generation wireless communication systems [11] have been designed to integrate features
such as high data rates varying up to 2 Mbps, Quality-of-Service (QoS) guarantees and multimedia
in the existing communication framework. This requires the implementation of highly sophisti-
cated and complex algorithms in real-time. There is a strain on existing hardware resources to meet
the requirements of these algorithms. Many algorithms proposed for next generation communica-
tion receivers, which are designed to give good performance in terms of error rates, are discarded
for a direct implementation as they have high computational complexity. A typical DSP or gen-
eral purpose processor implementation [5] is unable to fully exploit the parallelism and bit level
computations available in these algorithms. Hence, there is a need to efficiently decompose these
algorithms into different tasks and study their mapping on hardware to accelerate their implemen-

�This work was supported in part by Nokia Corporation, Texas Instruments Inc., the Texas Advanced Technology Pro-
gram under grants 1997-03604-044 and 1999-003604-080, and by NSF under grants NCR-9506681 and ANI-9979465.

0-7695-0716-6/00 $10.00 � 2000 IEEE

tation. The algorithms are also computationally expensive, involving subroutines such as matrix
inversions, which require floating point accuracy.

We develop VLSI architectures for multiuser channel estimation, one of the most computation-
ally challenging baseband tasks in the base-station receiver. There have been several hardware
implementations for multiuser detection [4]. Most implementations either assume perfect channel
estimation or assume single user estimation. This assumes that channel estimation can be done in
real-time and the data rates are considered to be dependent only on the detector. However, many
advanced channel estimation schemes [3, 6] have high computational complexity due to matrix in-
versions involved and cannot be performed in real-time and typically, simpler single-user sliding
correlator structures are used for channel estimation [13]. Jointly performing multiuser channel
estimation and detection is shown to have lower computational complexity and better error rate
performance than performing estimation and detection separately. We modify the previous chan-
nel estimation algorithm [15], based on the maximum likelihood principle and develop an iterative
scheme [12], which is computationally effective, suitable for a fixed point implementation and is
equivalent to matrix inversion in terms of error rate performance.

Architectures for the mobile handset have similar algorithms for implementation. ‘Blind’ ver-
sions [16] of these algorithms are available for the mobile handset. In this case, the channel is
synchronous and only a single user has to be detected. However, the architecture design consider-
ations for the mobile handset has to be power-efficient [9] and this also needs to be accounted for
in the design as a critical parameter. In this paper, we concentrate on the base-station receiver and
neglect power issues in our considerations.

The organization of this paper is as follows. The next section provides an introduction to
multiuser channel estimation and its real-time requirements. The algorithm is modified for a re-
duced complexity fixed-point solution, without loss in error rate performance. Section 3 shows
the task partitioning of the algorithm and the various area-time trade-offs. Area-constrained, time-
constrained and area-time efficient architectures are presented. A comparison is also made with a
previous DSP implementation. The conclusions and future directions are presented in Section 4.

2. Multiuser c hannel estimation

The next generation wireless communication systems [1] use a Wideband Code-Division Mul-
tiple Access (W-CDMA) scheme as the multiple access protocol for communication. This scheme
uses spread spectrum signaling, where each active user uses a unique signature sequence (spread-
ing code) to modulate the data bits. The base-station receives a summation of the signals of all the
active users after they travel through different paths in the channel. These channel paths induce
different delays, attenuations and phase-shifts to their signals and the mobility of the users causes
these parameters to change over time (called fading). Moreover, the signals from different users in-
terfere with each other (Multiple Access Interference) adding to the Additive White Gaussian noise
present in the channel. Multiuser channel estimation refers to the joint estimation of these unknown
parameters for all users to mitigate these undesirable effects and accurately detect the received bits
of different users.

2.1. Real-time requirements

Data transmission in the next generation wireless systems [11] is done in frames of 10 ms. The
data transmission can be done in variable rates depending on the spreading factor (N), as shown
in Table 1. The table gives an example of the number of bits in a frame for spreading factors of

0-7695-0716-6/00 $10.00 � 2000 IEEE

Multiple
Users

Channel
Estimation

Multiuser
Detection

Decoder
Data

Pilot

Demod
-ulator

Antenna

Decision
Feedback

M
U
X

Detected
Bits

+

Base-station Receiver

Delay

M
U
X

d

b

Figure 1. Simplified view of the base station receiver

4, 32 and 256 chips per data bit. We assume Binary Phase Shift Keying (BPSK) modulation. To
support real-time, the number of bits detected per frame should be at the rate of transmission. We
implement our design assuming a spreading factor of 32 chips per data bit. This implies that the
real-time requirement of the joint estimation and detection scheme is to detect input data bits at a
rate of 128 Kbps i.e. a bit of every user has to be estimated and detected in less than 7.8125 �s,
assuming that the estimation and detection blocks will be pipelined. A spreading factor (N) of 32
can support 32 users (K) and we shall use N = 32 and K = 32 in our design specifications.

2.2. Channel model

The model for the received signal at the output of the channel [15] can be expressed as

ri = Ybi + �i (1)

where ri 2 C N is the received signal vector due to the bits of all K asynchronous users, spread
with a spreading factor N , bi 2 R2K = [b1;i�1; b1;i; : : : ; bK;i�1; bK;i]

> are the bits of K users to
be detected, Y 2 C 2K�N is the actual channel, containing information about the spreading codes,
attenuation and delays from the various paths, �i is the noise, which is assumed to be Additive
White Gaussian Noise (AWGN) and i is the time index. The channel Y is to be estimated and used
for accurately detecting the received data bits of different users.

2.3. Maximum likelihood channel estimation

The channel estimation and detection block in the base-station receiver is shown in Figure 1. The
channel information is obtained by transmission of a pilot signal b, which is a sequence of bits that
is known at the receiver. The received pilot signal (pilot) is compared with the known bits to form
an estimate of the channel. The decisions from the multiuser detection block d are fed back to the

Table 1. Proposed data rates for next generation communication systems
Spreading Factor Bits Per Data Rates

(N) Frame (Bits per second)
4 10240 1 Mbps

32 1280 128 Kbps
256 160 16 Kbps

0-7695-0716-6/00 $10.00 � 2000 IEEE

channel estimation block along with the received data bits (data), delayed by the time required for
detection, for tracking the channel estimates when the pilot signal is absent.

The derivation of the joint estimation and detection algorithm is detailed in [15]. The multiuser
channel estimation algorithm is based on the maximum likelihood principle, where the probability
of received input given the transmitted bits is maximized. The computations that occur during the
estimation phase [15] are:

Rbr =
1

L

LX

i=1

bir
H
i (2)

Rbb =
1

L

LX

i=1

bib
T
i (3)

where L is the length of the pilot sequence, Rbr 2 C 2K�N is the cross-correlation matrix between
the synchronization bits bi and the received signal ri and Rbb 2 R2K�2K is the auto-correlation
matrix. The correlation matrices are averaged over a window of length L. The channel estimate can
be obtained by solving

RbbY = Rbr (4)

The channel estimate Y is fed to the detection block for detecting the unknown bits. The detected
bits , d, which are obtained at the detection stage, are fed back to the estimation block for tracking
purposes for a fading channel and to the rest of the processing blocks in the base-station receiver.

It is difficult to maintain numerical stability for matrix inversion, using decomposition tech-
niques such as QR or LU, with fixed-point. Also, tracking requires the rebuilding of the correlation
matrices and computing the inverse every time. This is computationally inefficient as this implies
a matrix inversion for every update. Hence, a better scheme is needed for meeting the real-time
requirements.

2.4. Iterative scheme for channel estimation

A direct computation of the exact maximum likelihood channel estimate Y involves the compu-
tation of the correlation matrices Rbb and Rbr , and then the computation of R�1bb Rbr at the end of
the preamble (pilot). The computation of the inverse at the end of the preamble is computationally
expensive and delays the start of detection beyond the length of the preamble until the estimate has
been computed and this delay limits the data rate. In our iterative algorithm, we approximate the
maximum likelihood solution based on the following ideas.

1. The product R�1bb Rbr can be directly approximated using iterative algorithms such as the
gradient descent algorithm [7].

2. The iterative algorithm can be modified to update the estimate as the preamble is being re-
ceived rather than waiting till the end of the preamble. This means that the computation per
bit can be reduced by spreading it over the entire preamble.

We present an iterative scheme based on the method of steepest descent for the matrix inversion.
The channel estimate Y is updated iteratively every bit and is available immediately after the end
of the pilot sequence. The updating of the estimate is done using the iterative scheme as shown

0-7695-0716-6/00 $10.00 � 2000 IEEE

IterateCorrelation
Matrices
(Per Bit)

Pilot
Bits

Pilot

M
U
X

Detected
Bits

Data

M
U
X

Y
O(4K2N,8)

Rbr
O(2KN,8)

Rbb
O(2K2,8)

TIME

Channel
Estimate

to Detector

b0
(2K,1)

Tracking Window

r0
(N,8)

b(2K,1)

r(N,8)

L

Figure 2. Task decomposition of multiuser channel estimation algorithm

below:

Rbr = Rbr + bir
H
i � bi�Lr

H
i�L (5)

Rbb = Rbb + bib
T
i � bi�Lb

T
i�L (6)

Y = Y � �(Rbb �Y �Rbr) (7)

This scheme is suitable for tracking, which is shown by the removal of the oldest bit in the window
of length L as the new bit is received. Tracking is simpler in this iterative scheme as the channel
estimates and correlation matrices are updated iteratively. During the initial pilot phase, tracking is
absent and the equations for correlation (equations 6, 7) reduce to the previous estimation scheme
using inversion (equations 2, 3). Another advantage of this scheme is that it lends itself to a simple
fixed-point solution, which was difficult to achieve using the previous inversion scheme. There are
no divisions except for the multiplication by the convergence parameter, �, which can be imple-
mented as a right-shift, by making it a power of two. This can be done as the algorithm is not
highly dependent on the exact value of �. This algorithm shows good convergence behavior as Rbb

is a symmetric, positive definite matrix and has a small condition number. The iterative scheme
gives the same error rate performance as that of the original scheme and has been verified using
simulations [12].

3. Task decomposition and VLSI architecture

The task partitioning of the algorithm into sub-blocks is carried out for pipelining and for uti-
lizing the inherent parallelism present in the algorithm. We implement different mappings of the
multiuser channel estimation algorithm to hardware to study the complexity and hardware require-
ment tradeoffs. We discuss an area-constrained architecture, a time-constrained architecture and an
area-time efficient solution.

3.1. Task decomposition

The task decomposition of the algorithm is as shown in Figure 2. The blocks that are pipelined
are shown on the horizontal time axis while the blocks that have coarse-grained parallelism are

0-7695-0716-6/00 $10.00 � 2000 IEEE

b0

b MUX

EN

Counter

Rbb Y

DEMUXMUX

MAC

Add/
Sub

Add/
Sub

Subtract

Subtract

Ynew

U/D

Load Store

ji

i j

j j

r0r

b

b0

16

8

8

88

8 8

1

11

1

1

1

1

1

1

88

88

Rbr

>>
8

8
16

Figure 3. Area-constrained VLSI architecture

shown along the vertical axis. The figure shows that the correlation matrices can be formed in
parallel and this can be pipelined with the iteration of the channel estimate matrix. The two mul-
tiplexers shown are for selecting between the known pilot and the received pilot signal during the
training mode and the detected bits and the received data signal in the tracking phase. The tracking
window is the history buffer and keeps the L most recent samples of the bits as well as the re-
ceived signal. The sizes of the sub-blocks are shown along with their word lengths in Figure 2. The
dynamic range of the input is dependent on Signal-to-Noise ratio (SNR), the Multiple Access Inter-
ference (MAI) and the number of users in the system. A detailed analysis is required to determine
the word-length of the input. For our design, we assume that the received signal is quantized by an
A/D converter to have a fixed precision word-length of 8 bits as a similar dynamic range analysis
[8, 18] for detection shows the input range to be 8 bits. However, the analysis of the algorithm pre-
sented here is independent of the word-length. Also note that the blocks r,Rbr andY are complex-
valued while b and Rbb are real-valued. For the sake of convenience, we henceforth represent the
current inputs bi, ri as b, r and bi�L, ri�L as b0, r0.

A typical architecture has window length L = 150, spreading gain N = 32 and the number of users

Table 2. Hardware requirements for an area-constrained architecture
Blocks Quantity Full Adder Cells Complex Total
Counter 1*8 8 - 8

Multiplier 1*8 64 *2 128
Adders 3 � 8 + 2 � 16 56 *2 112

Total Full Adder Cells 248

Elements Memory/Reg Usage Complex Total
b,b0 4K � 1 - 8K
r,r0 N � 8 *2 32N
Rbb 2K2

� 8 - 16K2

Rbr; Y; Y new 2KN � 8 *2 96KN

Net Memory Reqd. (in Bits) N=K=32 112,000

Total Time (Cycles) 4K2N 128,000

0-7695-0716-6/00 $10.00 � 2000 IEEE

b*bT b0*b0T

b b0

MUX

Rbr

M
U
X

r

r0

M
U
X

Rbb Y

Mult

Subtract >>

Subtract

2K*1 2K*1

2K*12K*1

K(2K-1)*1

K(2K-1)*1

2K2*8

2KN*16

2KN*162KN*8

2K*1

N*8

N*8

N*8

2KN*8

2KN*8

Figure 4. Time-constrained VLSI architecture block diagram

K = 32. All the architectures shown here assume a single-cycle 8-bit multiplication and addition.
We assume that a Wallace or Dadda multiplier tree [17] is used for multiplication requiring O(n2)
1-bit Full Adders for a n-bit multiplication. Since the multiplication by � in equation 7 results
in truncation of the output and need not be highly accurate for numerical stability, a truncated
multiplication using significantly less hardware [14] can be used. The delays of blocks such as
multiplexers and gates are assumed to be included in the single-cycle delay. For an area estimate of
the architectures, we consider the number of 1-bit Full Adder Cells in the design. We also assume
all blocks can be pipelined effectively. It can be observed from Figure 2 that the bottleneck in the
pipeline is the matrix multiplication Rbb �Y in equation 7 and we shall concentrate on this part in
our architectures.

3.2. Area-constrained architecture

An area-constrained architecture of the multiuser channel estimation scheme is as shown in Fig-
ure 3. The architecture is shown for computing only the real part of the channel estimate. Since
there are no multiplications between two complex numbers, the architecture can be assumed to
be replicated for the imaginary part. In this architecture, all matrix elements are computed an el-
ement at a time. The word lengths of the various blocks are as shown in Figure 3. The dotted
lines indicate the parts corresponding to the equations 5-7. The left part shows the calculation of
the auto-correlation and cross-correlation matrices (equations 5-6)whereas the right part shows the
calculation of the iteration loop (equation 7).

To form the outer product update, we take advantage of the single bit nature of the data and
replicate the bits b;b0 such that for forming the (i; j)th element of Rbb, the ith and jth bit of b are
XNORed (multiplication between +1 and -1 is an XNOR operation) and sent to a counter loaded
with the previous value of Rbb which increments or decrements by one. The (i; j)th element of the
outer product update b0�b0T is calculated, negated and sent to the counter, which again increments
or decrements by 1 (Up/Down). The multiplexer also has an enable signal such that the output is
tristated during the pilot phase, when b0 � b0T (equation 6) is not computed. The matrix Rbb is
then updated with a store signal.

A MAC (Multiply and Accumulate) unit is used to compute the inner product of the matrix
multiplication Rbb � Y. If we design a MAC unit such that the multiplication and addition are
pipelined with the other blocks in the figure, computing an element of Rbb � Y takes 2K or 64
cycles. The corresponding element of Rbr is updated similarly with an adder. The multiplication

0-7695-0716-6/00 $10.00 � 2000 IEEE

a·b a·c a·d

b·c b·d

c·d

b c da

b (2K)

bbT (K*{2K-1})bbT (K*{2K-1}*1) Rbb (2K2*8)

Rbb(i,j)

Counter

bbT(i,j)

U/D#

Rbb(i,i)

Counter

1

U/D#

Figure 5. Elements in the auto-correlation matrix block

by � is then carried out with the help of a right shift and the new (i; j)th element of Y comes out
of the pipeline every 2K cycles. The MUX-DEMUX circuit loads from Y and stores in Ynew

for every 4K2N or 128,000 cycles (the time taken to compute the entire matrix) and then switches.
The hardware requirements for an area-constrained architecture are as shown in Table 2. The design
requires an 8-bit counter, an 8-bit multiplier, three 8-bit adders and two 16-bit adders (for the MAC
and the subtraction by Rbr), about 112,000 bits of memory and 4K2N cycles.

3.3. Time-constrained architecture

The block diagram of a time-constrained architecture is as shown in Figure 4. In this architecture,
the available parallelism in the algorithm is exploited to the maximum extent. Hence, all the ele-
ments needed to perform a parallel multiplication are computed simultaneously and are pipelined.
Now, the entire matrices Rbb and Y are multiplied using an array of multipliers. The entire prod-
uct matrix is subtracted by the auto-correlation matrix, Rbr, shifted and a new channel estimate
is formed. Thus, as the time taken by the other computations is pipelined with the time for the
multiplication, the output can be formed every log2(2K) or 6 cycles.

We exploit the bit-level arithmetic and parallel structure of the correlation matrices to form the
correlation matrices simultaneously within a cycle. The sub-blocks for the formation of the auto-
correlation matrix and cross-correlation matrix are shown in Figures 5 and 6. Since the auto-
correlation matrix update is a symmetric matrix and all the diagonal elements are 1’s (a� a =
1), we need to compute only the strictly upper triangular (or lower triangular) part of the auto-
correlation matrix (Figure 5). Also, as the updates are all +1’s or -1’s, this can be obtained from a
simple XNOR gate structure. The counters in the auto-correlation matrix are then updated based on
the sign of the updates. Also, the elements in the cross-correlation update are +r or �r and hence,
the vector r could be directly added or subtracted with every column of the auto-correlation matrix
based on the sign of the bit vector b. The hardware requirements for the time-constrained architec-
ture are as shown in Table 3. We see that though the hardware requirements increase by an order
of magnitude, the memory requirements decrease significantly as there is no need for storage and
there is a high speedup in time obtained compared to the area-constrained architecture which shows
the potential parallelism in the architecture. For a typical architecture , the number of Full Adder
Cells required is 20,000,000. This is a far too aggressive solution and difficult to implement even
with current silicon technology. However, this states the theoretical minimum time requirements
by exploiting the available parallelism as log2(2K) or 6 cycles, which is the time required to do the
parallel multiplication and pipelining it with the other blocks. We require 2KN(2K � 1) 16-bit
adders for doing the recursive doubling in log2(2K) time [adding 2K elements in log2(2K) time

0-7695-0716-6/00 $10.00 � 2000 IEEE

requires (2K � 1) adders] and 2KN 16-bit adders for the subtraction following the multiplication.

Table 3. Hardware requirements for a time-constrained architecture
Blocks Quantity Full Adder Cells Complex Total
Counter 2K2

� 8 16K2 - 16K2

Multipliers 4K2N � 8 256K2N *2 512K2N

Adders 2KN � 16 + 2KN � 8 48KN *2 96KN+
+4K2N � 16 +64K2N 128K2N

Total Full Adder Cells N=K=32 20,000,000

Elements Memory/Reg Usage Complex Total
b,b0 2K � 1 - 4K
r,r0 N � 8 *2 32N
Y 2KN � 8 *2 32KN

Net Memory Reqd. (in Bits) N=K=32 32,000

Total Time(Cycles) log2(2K) 6

3.4. Area-Time Efficient Architecture

From comparing the above two architectures in Table 5, we see that the area-constrained ar-
chitecture does not meet real-time requirements while the time-constrained architecture is highly
aggressive in area. So, a tradeoff point in the design space needs to be found, which meets the real-
time requirements with minimum additional area. This can be done by observing that the major
part of the chip area is used the array of multipliers. Hence, instead of computing the entire matrix
product in parallel, the product should be computed element by element by doing the inner product
in parallel. This would imply 4K or 128 multipliers. If this was done row by row or column by
column, it would require 4K2 or 4KN multipliers, requiring about 3600 multipliers, which may
not be available just for channel estimation. Since the output is computed element-by-element, this
would require 2KN or 2000 cycles for the complete channel estimate. The block diagram of the
area-time efficient architecture is shown in Figure 7.

The hardware requirements for an efficient area-time architecture are as shown in Table 4. This
design requires 2K Multipliers to compute an element every cycle and (2K � 1) 16-bit adders for
recursive doubling. This design requires about 10,000 Full Adder Cells and finds the estimate in
2KN cycles.

3.5. Comparisons with DSPs

An architecture comparison of the different VLSI architectures with a DSP is evaluated in this
section. Though DSPs and general purpose processors with MMX-enhanced instruction sets can
exploit byte-length parallelism, they are inefficient for bit level parallelism. Storage of bits on
such a processor is either inefficient as it is stored as bytes or a large overhead is involved in
packing and unpacking these bits. Also, the compiler may not take advantage of the fact that
most multiplications are with bits and replace them with additions or subtractions. Using a control
structure instead also limits the utilization of available parallelism. Also, formation of bit-level
matrix updates as seen in the different VLSI architectures is much more effective and simpler to
build in hardware with XNOR gates, giving O(1) performance with O(K2) or 1000 XNOR gates,
while it may take O(K2) or 1000 cycles on a DSP and takes O(K2) or 1K bytes in memory.

0-7695-0716-6/00 $10.00 � 2000 IEEE

b c da

b (2K*1)

r
(N*8)

Rbr (2KN*8)

Rbr(i,j)

Adder

b(i)
Add/
Sub#

r(j)

8 8

1

Figure 6. Elements in the cross-correlation matrix block

Assuming a 500 MHz clock for the VLSI architectures, the projected time required to compute
the channel estimate along with the hardware required for 32 users and a spreading code of length
32 is as shown in Table 5. This is compared with the implementation of the previously existing
algorithm (equation 4), on a TI TMS320C6701 Evaluation Module, operating at 166 MHz. The
DSP implementation of the multiuser channel estimation algorithm using the previously existing
schemes is shown to require 763401 cycles [5], which corresponds to 4.56 ms for 15 users. Assum-
ing that the channel estimate is updated for every block of 10 bits, and extending it linearly to 32
users, this corresponds to a time requirement of 0.97 ms or 1.02 Kbps.

The inherent parallelism present in the algorithm can be seen from the ratio of time taken for
computation by the area-constrained and time-constrained architectures. The area estimates are
compared using the number of Full Adder Cells needed in the design, as shown in Table 5. The
time difference between the DSP and the VLSI architectures is due to the improvements in the
algorithm modifications and the fact that the bit-level and byte-level parallelism are not exploited
on the DSPs and the additional memory references. The difference in the processor speed does
not play a major role in the time differences. We can observe that the area-constrained architecture
does not satisfy real-time constraints of 7.8125 �s while the time-constrained architecture is far too
aggressive. The area-time efficient architecture meets the next generation real-time constraints by
designing the area-time tradeoff in 4 �s, which is twice the target data rate of 128 Kbps. Hence,
the clock speed could be reduced by half to 250 MHz for power efficiency. From Table 4, it is
seen that the time required is directly proportional to the number of users (K) in the system and
the spreading factor (N), which are also dependent on each other as seen from Table 1. Hence, the
system design also meets real-time requirements for various data rates, such as 1 Mbps for 4 users
with a spreading factor of 4.

4. Summary and Future Directions

We show that a custom VLSI architecture for baseband signal processing in a wireless base-
station receiver can be extremely efficient in meeting real-time requirements of the receiver. We
discuss three different architectural mappings of multiuser channel estimation, one of the core
baseband signal processing algorithms in the receiver. We develop a fixed-point, computationally
effective version of the algorithm for a real-time VLSI architecture. The area-constrained architec-
ture with minimum hardware could be mapped on 100K gate FPGAs as it requires only 248 adder
cells and 16 KB memory and used in low data rate pico-cell base-stations. The time-constrained
architecture is used to identify the parallelism in the algorithm and to establish the maximum the-

0-7695-0716-6/00 $10.00 � 2000 IEEE

1*8

b*bT b0*b0T

b b0

MUX

M
U
X

r

r0

MUX

Mult

Subtract >>

Subtract

2K*1 2K*1

2K*12K*1

2K*1
2K*8

2K*8

1*16

1*161*8

1*1

1*8

N*8

N*8

1*8

Rbr

Counters

StoreLoad

Rbb
Y

DEMUXMUX

Ynew

1*8

Adder

1*8

2K*1

2K*8

2K*8

Figure 7. Area-time efficient VLSI architecture

Table 4. Hardware requirements for area-time efficient architecture
Blocks Quantity Full Adder Cells Complex Total
Counter 2K*8 16K - 16K

Multipliers 2K*8 128K *2 256K
Adders 2K � 16 + 1 � 16 + 2 � 8 32K + 32 *2 64K + 64

Total Full Adder Cells N=K=32 10,000

Elements Memory/Reg Usage Complex Total
b,b0 4K � 1 - 8K
r,r0 N � 8 *2 32N
Rbb 2K2

� 8 - 16K2

Rbr; Y; Y new 2KN � 8 *2 96KN

Net Memory Reqd. (in Bits) N=K=32 112,000

Total Time(Cycles) 2KN 2,000

oretical data rates. The area-time efficient architecture design meets the real-time requirements of
the receiver with minimum area overhead. The orders-of-magnitude difference between the area
and time-constrained solutions show significant inherent parallelism in the algorithm. The VLSI
architectures are able to better exploit the bit level computations and the available parallelism in the
algorithm to achieve a real-time solution as compared to a DSP implementation.

A custom VLSI solution would also help in meeting the desired low power requirements of the
mobile handset for ‘blind’ versions of the algorithm. A complex number representation [2] could be
used to accelerate the complex-valued computations. The recursive nature of the algorithm could
also be used to develop an online and Most Significant Digit First (MSDF) implementation [10].
VLSI solutions for other blocks in the baseband receiver, such as detection and decoding, are also
being built for a complete real-time ASIC architecture for a wireless baseband receiver.

0-7695-0716-6/00 $10.00 � 2000 IEEE

Table 5. Comparisons between different architectures
Architecture Full Adder Cells Memory (Bytes) Time Data Rates

Area-Constrained 248 16 KB 0.262 ms 3.81 Kbps
Time-Constrained 20,000,000 4 KB 12 ns 83.33 Mbps

Area-Time 10,000 16 KB 4 �s 256 Kbps
TMS320C6701 DSP - 128 KB 0.97 ms 1.02 Kbps

Real-Time Requirements 7.8125 �s 128Kbps

References

[1] Fumiyuki Adachi, Mamoru Sawahashi, and Hirohito Suda. Wideband DS- CDMA for Next-Generation Mobile
Communication Systems. IEEE Communications Magazine, 36(9):56–69, September 1998.

[2] Takafumi Aoki, Yuji Ohi, and Tatsuo Higuchi. Redundant Complex Number Arithmetic For High-Speed Signal
Processing. In IEEE Workshop on VLSI Signal Processing VIII, pages 523–532, Sakai, Japan, October 1995.

[3] Stephen E. Bensley and Behnaam Aazhang. Maximum likelihood synchronization of a single user for CDMA
communication systems. IEEE Transactions on Communications, 46(3):392–399, March 1998.

[4] Neiyer S. Correal, R. Micheal Buehrer, and Brian D. Woerner. A DSP-Based DS-CDMA Multiuser Receiver Em-
ploying Partial Parallel Interference Cancellation. IEEE Journal on Selected Areas in Communications, 17(4):613–
630, April 1999.

[5] Suman Das, Sridhar Rajagopal, Chaitali Sengupta, and Joseph R. Cavallaro. Arithmetic Acceleration Techniques
for Wireless Communication Receivers. In 33rd Asilomar Conference on Signals, Systems, and Computers, pages
1469–1474, Pacific Grove, CA, October 1999.

[6] E.G.Strom, S.Parkvall, S.L.Miller, and B.E.Ottersen. DS-CDMA syncronization in time-varying fading channels.
IEEE Journal on Selected Areas in Communication, 14(8):1636–1642, October 1996.

[7] Gene H. Golub and Charles F. Van Loan. Matrix Computations, chapter 10, pages 520–521. John Hopkins Univer-
sity Press, third edition, 1996.

[8] Seehyun Kim, Ki-Il Kum, and Wonyong Sung. Fixed-Point Optimization Utility for C and C++ Based Digital
Signal Processing Programs. IEEE Transactions on Circuits and Systems-II:Analog and Digital Signal Processing,
45(11):1455–1464, November 1998.

[9] Tao Long and Naresh R. Shanbhag. Low-Power CDMA Multiuser Receiver Architectures. In IEEE Workshop on
Signal Processing Systems, Taipei, Taiwan, October 1999.

[10] M.D.Ercegovac and T.Lang. Fast Arithmetic For Recursive Computations. In Workshop on VLSI Signal Processing,
volume V, pages 14–28, Napa Valley, CA, October 1992.

[11] M.Zeng, A.Annamalai, and Vijay K. Bhargava. Recent advances in Cellular Wireless Communications. IEEE
Communications Magazine, 37(9):128–138, September 1999.

[12] Sridhar Rajagopal, Srikrishna Bhashyam, Joseph R. Cavallaro, and Behnaam Aazhang. VLSI Architec-
tures for Multiuser Channel Estimation in W-CDMA Communication Systems. Technical Report TREE0003
http://www.ece.rice.edu/˜sridhar/research/tree0003.ps, Rice University, March 2000.

[13] R.L.Pickholtz, D.L.Schilling, and L.B.Milstein. Theory of spread-spectrum communications- A Tutorial. IEEE
Transactions on Communications, 30(5):855–884, May 1982.

[14] Michael J. Schulte and Earl E. Swartzlander. Truncated Multiplication with Correction Constant. In Workshop on
VLSI Signal Processing, volume VI, pages 388–396, Veldhoven, Netherlands, October 1993.

[15] Chaitali Sengupta, Suman Das, Joseph R. Cavallaro, and Behnaam Aazhang. Efficient Multiuser Receivers for
CDMA Systems. In IEEE Wireless Communications and Networking Conference (WCNC), pages 1461–1465,
New Orleans, LA, September 1999.

[16] Murat Torlak and Guanghan Xu. Blind Multiuser Channel Estimation in Asynchronous CDMA Systems. IEEE
Transactions on Signal Processing, 45(1):137–147, January 1997.

[17] Neil H.E. Weste and Kamran Eshraghian. Principles of CMOS VLSI Design: A Systems Perspective, chapter 8.
Addison-Wesley, second edition, 1993.

[18] Gang Xu and Joseph R. Cavallaro. Real-time Implementation of Multistage Algorithm for Next Generation Wide-
band CDMA Systems. In Advanced Signal Processing Algorithms, Architectures, and Implementations IX, SPIE,
Denver, CO, July 1999.

0-7695-0716-6/00 $10.00 � 2000 IEEE

