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Lecture 1:

Models, Performance
Measures and Regimes of

Interest



The Finite-Dimensional Linear-Gaussian Channel

Many (almost all?) important scenarios in wireless communication networks
yield a PHY layer model in the form

y = Hx + z (1)

wherey,zc C", xcC"andHec C"*"™, andz € CN(0,X.).

(1) is a finite-dimensional Linear-Gaussian channel.

Different special cases depend on the constraints at the input and output.

Input constraints:

they limit the empirical input distributions that the

encoder(s) are allowed to generate.

Output constraints:
decoder(s).

they limit the type of processing allowed at the



e Sequence of channel uses over signal-space dimensions: often we think of
(1) as one channel use of the channel

vlt] = Hlt)x[t] +2lt], t=1,...,T

e Transmission of a block of 17" channel uses.

e The index t € {1,...,T} denote the dimension over which coding is
performed (this may be time, frequency, time-frequency ...).

e H|t| may change at every t, stay constant for all t € {1,...,T} or change in
blocks of some duration L|T.



Example 1: Direct-Sequence CDMA

e Each user is given a spreading code (or signature sequence) s, =
T N
(Sl,lm Ceey SN,k) cC.

e A chip-synchronous and symbol-synchronous model, sampled at the chip
rate, is given by

K
YN +i— 1= sjpaplt] + 2N +i—1], i=1,...,N
k=1

e x;[tIN]is the information symbol of user k at symbol time ¢.

e Stacking N consecutive chips into N-dimensional vectors, we obtain

y[t] = Sxt] + =]



e Chip normalization: s; ; =

1
VN

Si,k with |Sz,k| = 1.

e Input power constraint (uplink): E[|zx[t]|?] < Pk.

e Input power constraint (downlink): Sr . E[|zx[t]|?] < P.

A
21[0] zi(l] | x1[2] 21[3] | a1[4] 21[5]
22(0] | wo[l] | (2] 22(3] | w2l | @[5
z30] | ws[l] | as[2] w33] | ws[d] | a3[5]
24[0] z4[1] 242] za[3] | wal4] 4[5]

x[0] x[1] [S  x[2] x[3] |S  x[][S x[5]

1 symbol = N|chips




e Simple generalization: “long spreading codes” (as in 3G WCDMA and CDMA

2000)
y[t] = S[¢]x[t] + z[t]
The spreading code of each user changes from symbol to symbol.

e Simple generalization:  frequency-flat fading (formally equivalent to
shadowing or distance-dependent pathloss):

where A[t| = diag (A1[t],..., Aklt]).

e Connection to our reference model: H[t] = S[t|Aft], X, = NoI, n = N,
m = K.



Example 2: Direct-Sequence CDMA with Multipath

e Multipath fading in CDMA is modeled by a “short” channel impulse response
with respect to the symbol duration. (We can neglect ISI).

o Effective spreading code is the convolution of s; with the channel impulse
response cy




e Uplink: each user is affected by its own frequency-flat pathloss/shadowing
and multipath fading channel:

H = [Clsl,...,CKSK]A

e Downlink: the signal broadcasted by the base station is received at any given
user k through its own pathloss/shadowing and multi path fading channel:

H=CS

e In both cases, we have the model
y = Hx+ z

(make it time-varying as required).



Example 3: Multi-Carrier CDMA

e Introducing OFDM: the Inter-Symbol-Interference (ISI) channel in general:

~
L

yli] = cll]x|i — €] + z]i]
J4

I
o

e LTI system, with finite-length impulse response ¢ = (¢[0], ..., c[L — 1]).

e We use Cyclic Prefix (CP) precoding, i.e., fix block length N and send
sequences of blocks {x[t]} with the CP precoding defined by

(Z[tN],...,ztN+ N —L+1],...,z[tN + N — 1))
block
l
(Z[tN+ N —L+1],...,2[tN+ N — 1], z[tN],...... ,Z[tN + N —1])
Cyclic;rprefix block




e The vectorized channel model becomes

ylt] = Cx[t] + z[t]

where y[t], z[t], x[t] € C", and C is a circulant matrix with first column [ 8 ] :

A




e Result: Any N x N circulant matrix C can be written as

C = FH diag(Go, .. -;GN—l) F

where F is the unitary DFT matrix with elements

_j27'l'k:£
F,=2" k=0..N-1 ¢=0..N-1
, \/N Y 9 9 9 9 9
and where _ 0] i}

C

B GO 7] C[:l]

1 VNF | L1

' 0

E :

0

is the vector of DFT coefficients of the impulse response, i.e.,

L—1
G = Z c[ﬁ]e_jQWWM
=0
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e IDFT precoding at the transmitter:

e DFT unitary transformation at the receiver:

ylt] = F ylt]

e The resulting frequency-domain OFDM channel is given by
ylt] = diag(Go, ..., Gy _1)X[t] + 2[t]

where the frequency-domain noise is z[t] = Fzlt] (if z[t] ~ CN (0, NoI) then
also z[t] ~ CN (0, Nol)).
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e In multi-carrier CDMA, the block of frequency domain symbols are obtained
by

Xk[t] = Ska}k[t]
where s;, € C" is the frequency-domain spreading code.

e Uplink: the resulting channel model is again given by (1) with
H=(GoS)A

where © is element-wise product,

Go,l e GO,K 50,1 T S0,K
G = : : : S — . .
| Gn-11 - GNo1,K | SN-11 "' SN-1,K _
and A =diag(A, ..., Ax) represents the frequency-flat pathloss/shadowing.

e Downlink: the resulting channel model is again given by (1) with

H = diag(GO, Cee GN_l)S



Example 4: Frequency-Flat MIMO Point-to-Point

e One channel use of the MIMO point-to-point channel is given by (1) with
H < C"*" and input constraint tr(E[xx"]) < P.

o Elements H; ; of H represent the channel coefficients from Tx antenna j to
Rx antenna <.

15



Example 5: MIMO-OFDM Point-to-Point

e Multipath MIMO channel: time-domain

ylt = S Hoxlt— ] + 2t
¢=0

e Using the same OFDM idea explained before, this can be reduced to the set
of parallel channels in the frequency domain

yif.t] = H[fIX[f.t] + zf. 1]

where v € {0, ..., F — 1} is the subcarrier index and
L—-1 ,
H[f] = Z Hoe I77¢
=0

is the DFT of the matrix channel impulse response.
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Example 6: MIMO Multiple Access Channel (MIMO-Uplink)

e Forthe sake of notation simplicity, we shall neglect the time-frequency cannel
use index unless necessary.

e The channel is still represented by (1) with the constraint that x is generated
by a product distribution, i.e., x ~ HlePXk (in particular, the input
covariance E[xx"] is diagonal).

17



Example 7: MIMO Broadcast Channel (MIMO-Downlink)

e In this case it is convenient to use the channel model with y = H"x + z, and
the constraint of decentralized processing at the receivers.

e Collection of channels y;, = hl'x + z.

18



Example 8: Multi-Cell Models

19



Discretization of the Users Distribution

user user user user user user I

group 1 group 2 group 4 group 8 group 6 group 5

N /
N Y

cell1 cell 2

e We assume that the users are partitioned in co-located groups with NV single-
antenna terminals each.

e We have A user groups per cluster, and clusters of B cells.

e We have M = N base station antennas per cell.

20



Cluster of Cooperating Base Stations

o

2% taking into account the ICI power.

o Modified path coefficients 3, r =

e Channel matrix (B x A blocks of size YN x N):

- G aHi1 - BraHia o
H = : ' ;

OpaiHp1 -+ 0OpaHpa |

e Reference cluster channel model
e H
y=Hx+1z

where y = C*, x = C""" and z ~ CN(0,1).

21



Performance measures: K users system

Assume T large enough such that reliable communication is meaningful.

Assume for simplicity a single channel matrix state spans 7' channel uses:
i.e., His constant forall t € {1,...,T}.

For given H, the Instantaneous achievable rate region is R(H) C Rf.

This means that for any ¢ > 0 and rate K-tuple R(H) = (R;(H), ..., Rx(H))
such that R + ¢1 € R(H) there exists a family of coding schemes for
iIncreasing 1" such that

T'— o0

K
. . 1 . —
hTngéfflog Mp| > Ry VEk, lim P <ijl {Wk + Wk}> =0

22



e Now we consider a long sequence of blocks of (large) length T', and we are
interested in the long-term throughput region of the network, i.e., the region
of long-term average rates

Ry = lim 3" Ry(H[t)) = B[Ry (HD)]

o While R(H) may not be convex, the long-term throughput region R is always
convex, since time-sharing is always possible.

o We are interested in points R on the boundary of R.

e In particular, we are interested in maximizing some desired concave and

componentwise non-decreasing network utility function U(R), that reflects
some desired notion of fairness.

23



e Network Utility Maximization (NUM):

maximize  U(R)
subjectto R €

e The problem is always convex.

o Difficulty: R is typically very hard to express in closed form (curved,
uncountable number of supporting hyperplanes).

Ry

24



Scheduling and resource allocation

We have an instantaneous coding strategy achieving points R(H) € R(H)
for any channel state H.

Over the sequence of successive blocks, we wish to schedule the users and
allocate the netwoLk*resources such that, in the long-term average sense, we
achieve the point R € ‘R, solution of (2).

A general method: Drift Plus Penalty (DPP).

Let Ri[t] = Rix(H]|t]) denote the instantaneous achievable rates and define
the transmission queues

Qrlt + 1] = [Qklt] — Ri[t]]; + Axlt]

for a set of arrival processes { Ax[t]}.

25



e System stability region: convex closure of all arrival rates A, with A\, =
E[A[t]], such that there exists a transmission policy such that all queues
are strongly stable: limsup, _, . = > [_; E[Qx[t]] < oo for all k.

Theorem 1. (Stability Policy) Suppose that the arrival process Alt] is i.i.d. over
the slots, with elements uniformly bounded in |0, An.x|, and that the channel
state H|[t| also forms an i.i.d. sequence over the slots. Then, the system stability
region coincides with R. Furthermore, any X in the interior of R is stabilized by
the max-weight dynamic policy, solution of:

maximize Y Qxl[t]Rl[t]
subject to (;{1 t],..., Rilt]) € R(H[t]) (3)

[]

For a proof, see for example [L. Georgiadis, M. J. Neely and L. Tassiulas,
“Resource allocation and cross-layer control in wireless networks,” Foundations
and Trends in Networking, NOW Pub., 2006].
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Theorem 2. (Utility Maximization) Consider a virtual arrival process defined as
follows: A[t] = a* with

a*=arg max {VU(a) — Z aka[t]}

aE [O,Amax]K k‘:l

for some 0 < An.x < co andV > 0. Then, by applying the stability policy
of Theorem 1 to such virtual queues, the resulting long-term averaged network
utility satisfies
1 . —% K
lim inf -y ER[{]| >UR ) - =
lTngg;U<T; [ H]) R) -+
for some system-dependent constant ~ and for sufficiently large Ana.x. In
addition, all virtual queues are strongly stable, with

r—oo T

limsup = S E[Qy[t] = O(V), ¥k

For a proof, see for example [Georgiadis, Neely, Tassiulas, FnT 2006].
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A Simple Example

e Orthogonal multiple access channel with individual link capacities C1, Cs.
The instantaneous rate region is the non-convex discrete set of points

R = {(Cla 0)7 (Oa 02)}

e In this case R is the set of all non-negative (R:, R,) such that

R Ry
<1
Cl+02_

e We wish to maximize the Proportional Fairness network utility function

28



e In this case, we obtain an explicit closed-form solution:

Ry R
R17R27 ZlOg Rk — (Cl Cj — 1)

e Differentiating and applying the KKT conditions, we obtain

yielding

Since R, = 0 yields an objective function value equal to —oo, the solution
must be strictly positive. Hence

Ry = -
7

29



Replacing in the constraint, we obtain n = 2, such that

_ cC
Ri=—"

e This corresponds to serving each user for a fraction 1/2 of the slots (each
user is given equal transmission resource).

e Simulation: 1, = 1,Cy = 4, V = 10, A.ax = 5. Time-averaged throughput
versus slots:

35 J
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Regime of Interest: Large Systems

We are interested in the regime of n, m — oo, with fixed ratio ™ = j.

Normalizations: the elements of H have mean 0, variance O(%) and higher
order moments that vanish sufficiently fast.

In DS-CDMA systems,

1

i :—S@‘, with ]ESz 2:1
Si,k \/N K “ ,k‘]

In downlink or single-user MIMO systems, with total input power constraint
P, we have
y=H"x+z tr(Exx"])=P



We can divide and multiply by M (number of Tx antennas) and have

1

1
= —H"%+2z, —tr(Exx"])=P

In uplink MIMO systems, it is reasonable to assume that the total transmit
power is constant, such that

_ 1 B HYY —
y—\/—MHXJrz, K’[r(E[Xx ]>—P

where 6 = K/M.

General idea: under relatively mild and general conditions, in a large number
of relevant settings, the instantaneous rates R;(H) become deterministic
constants that depend on the system “geometry”, but are independent of
the specific realization of H.

As a consequence: all NUM scheduling problems become as easy as the
simple example of before!
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End of Lecture 1



Lecture 2:

Basic Results with I.1.D.
Matrices



DS-CDMA with 1.i.d. Spreading Codes

Recall the model

K
y:SX+z:Zskxk—|—z, (4)

S € CN*¥, with i.i.d. elements, s;; =

k=1

1

VN

S; 1, with E[|S; 1|2] = 1 and finite

higher order moments (for brevity, we will say “well-behaved”).

7z ~ CN(O, N()I)

Uplink symmetric case: E[|z;|?] < P, where P denotes the energy per

symbol (power) for each user.

We define the SNR per user as

sNr= —
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Vector Gaussian MAC capacity region

Theorem 3. The capacity region of the vector Gaussian MAC (4) is given by
the set of inequalities

1
Y Ri < max  —I(x(K);y[x(K°),S)
ek P(x)eP

for all subsets K C {1,...,K}, where x(K) denotes the collection of input
variables {zy. : k € K} and where P denotes the set of product input distributions
satisfying the input power constraint. ]

For a proof, see for example [T. Cover and J. Thomas, Elements of information
theory, 2nd Ed., Wiley 2012].
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e It is not difficult to show that, for any subset K, the corresponding mutual
information term is maximized by letting x ~ CN (0, PI), such that

I(x(K); y|x(K),S) = E [log [+ snrS(K)S"(K)|]

where S(K) is the submatrix of S comprising the columns {s; : k € K}.

e The biting constraint for the sum rate is given by

1
Raum < I [log [T+ snrSS"|]

37



e We have

1

—K [log‘I—I—SHrSSHH = N

Zlog 1+ snr,;(SSH)

> )
)

Zlog 1+snr)\ SSH

1=1

= E [log (1 + snrA(SS"))]

SsH

— E / log(1+snr)\)dF(N)()\)]
L J O

where A\(M) denotes an eigenvalue of a matrix M, and Fl&m()\) s the
Empirical Spectral Distribution (ESD) of the unordered eigenvalues of an
N x N matrix M, defined by the “ladder” function

N

00 = 5 32 188" < 0}
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In general, for random S and finite N we have that Féé\,?()\) is a collection of
random variables, for all A € R.

Going to the limit: by letting N — oo with K/N = [, under rather mild
conditions (always verified in the cases treated here), we have that

N
FLl(\) = Fegn(\)

where Fyi(M) is the Limit Spectral Distribution (LSD) of the sequence of
random matrices SSH, for increasing N .

Technically speaking, this convergence is weak convergence almost
everywhere, that is, for each point of continuity A we have convergence
almost surely (with respect to the probability space of the random matrices).

Under such convergence conditions, the large-system limit of the symmetric
sum rate is given by

Roum = / log(1 + SNIA)dFggn(\)
0

39



One Step Back: Transforms

e The explicit characterization of the LSD of a sequence of random matrices is
typically difficult (only a few famous results are known).

e In contrast, we shall follow an implicit characterization, through some
appropriate integral transform of the LSD.

e Without trying to be fully exhaustive, we start by introducing here two
fundamental transform which have a communication theoretic significance.

Definition 1. (n-Transform) Let X denote a non-negative RV. The n transform
of X is defined by

nx(v) =E [1 +17X] = /OOO 7 jy:chX(x)

forv e R,.

We will use the notation n\ () to indicate the n-transform of \(M) ~ Fy(\), the
LSD of some sequence of random matrices M. O

40



Definition 2. (Shannon-Transform) Let X denote a non-negative RV. The
Shannon-transform of X is defined by

Vx(v) = Eflog(1 +~vX)] = /OOO log(1 + vz )dFx ()

fory e R,.

We will use the notation V() to indicate the Shannon-transform of A\(M) ~
Fum(N), the LSD of some sequence of random matrices M. O

e Going back to our DS-CDMA uplink channel, we have

Rsum = Vggn(sNr)

41



Elementary Properties of » and Shannon Transforms

e nx(7) is strictly monotonically decreasing for v € R,, with nx(0) = 1 and
limy oo nx(y) = P(X = 0).

e ynx(7) is strictly monotonically increasing for v € R, from 0 to E[1/X].

e Asymptotic normalized rank of M (fraction of non-zero eigenvalues) is p =
1 —limy o mm(7y), and

1

lim —tr (M) = 1i
Jim =t (M) Lim ()

42



e Forany A of dimension N x K and B of dimension K x N, suchthatM = AB
IS non-negative definite,

N (1 —=nas(v)) = K (1 —nBa(7))

such that, in the limit of N — oo and K/N = 3, we have

naB(y) =1— B+ Bnea(y)

e Relation between n and Shannon transform:

v%vx(v) =1—-nx(7)

43



e [race Lemma: For a sequence of N x N matrices with uniformly bounded
spectral norm, and a sequence of random vectors s with i.i.d. components
with mean 0 and variance 1/N, independent of M,

s"Ms — %tr(l\/[) %0

e As a consequence, ’ 1 a.s
sT(IT+~yM) ' s 2% m(y)

44



Sum-Capacity of the Symmetric DS-CDMA Uplink

VN
well-behaved S; ;.. Let T denote a diagonal non-negative definite matrix with

well-defined LSD Fr(\), as K — oo. Then, as N — oo with K/N = 3, the LSD
of STS" exists and has n-transform ngrgn(y) = n, solution of the equation

Theorem 4. LetS be N x K with i.i.d. elements of the type s; j, = —S; 1, with

_1-n
. nr(yn) )

The corresponding Shannon transform is given by

1
Vsrsh(Y) = B8Vr(vn) + log; +n—1 (6)
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Sketch of Proof:

e We give an instructive proof with profound communication theoretic
significance.

o Consider areceiver that wishes to detect user k (here we assume E|[|z;|?] = 1

for all k):
y = Sk\/ﬁ;xk T ZSj\/:]Tjwj + z

j#k

e The optimal linear receiver maximizes the Signal-to-Interference plus Noise
(SINR) at its output, and is given by by linear MMSE receiver:

7, = Elziy"] (Blyy") 'y

e Explicitly, we have

46



and
Elyy"] = Thsis) + Z Tjsjst + Nol
j 7k

7

-~

2

e The resulting MMSE is given by

MMSE;, = E[l/?] - Elzey™] (Elyy™) " (Elzry™)
= 1-—- TkS]:l (TkSkSZ + Ek)_l Sk

TkEglsks,':Egl
S
1+ Tksgil,;lsk "

= 1- TkS]:' <Ek1 —

1
1+ Thepeg

with Wi = SZE];:[S]{.

H
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e From the well-known relation between MMSE and SINR, we have

E[|zx?] — MMSE;, (1 O

1+ Topy) =T
1—F7kuk)( kiti) = Thper

o Now, letting \; denote the i-th eigenvalue of STS", we can write:

tr

[]=
b

+ | >
B

|
—~

(NoI + STS") ™' STS")

= 1r

/_\

K
(NoI+sTSH) 3" Tksks,:'>

Tisi (NoI+ STS") s,

I
)=

i
—_

sinry
sinry, + 1

[
Dﬁw

™
I
—_
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where the last step follows again by the matrix inversion lemma and by using

the SINR expression found before.

e We argue that in the limit for large k, the quantity

1

[ = SEElzlsk = s (I +

Ny

e Hence, in the limit, we have

1 1 1 1
ﬁoSkaSE> S — FOUSTSH (ﬁo)

does not depend on £ any longer.
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e By the definition of n-transform, we also have

N N

1 \: 1 1 1
lim — ' —1— lim — —1— —
Noeo N ; \; + Ng N N ; 1+ NLO)\Z- IsTsH (N0>

e Putting things together, letting v = 1/Ny, and recalling that K = 8N,

1 — ngrgh (7) = B (1 — 01 (yngTst (7))

such that they key equation (5) is proved.

e Next, we need to proof the expression for Vyrgr(7y). To this purpose, we write
1 = nsrsi(7), 1 = 41 and define T ~ Fr(t) to be a RV distributed as the

50



LSD of T. Then:

%5VT(’777) —

| :
S (1+7ﬂ)
Y n

where we have used the key equation (5).

e Using the differential relation between Shannon transform and n-transform,

we have
iy h(y) = 1 — ngrgn(7) _ 1 —n
dry S5 v v

51



e Identifying terms, we obtain

d d 7
——Vsrsi(7) = —BVn(yn) + 1 — -
d sTsH(7) ~ (1) + 1) .

e Since for n = 0 both sides are equal to 0 (initial condition), integrating from 0
to v we obtain (6).
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e Going back to our original problem, for the symmetric case we have T, = P

for all k, such that |

1 +~P

n(y) =

e The sought expression for nggH(y) is obtained by solving the quadratic
equation

g=——1

1
1 1+P~n

e Recalling that v = 1/Ny, and that snr = P/Ny, we can redefine v = snr and
obtain n = nggn(y) as the solution of

1?1 +(B—1)n—1=0

53



e Using the properties of the n-transform, we can choose the root of the above
equation corresponding to the sought n-transform:

~(1+9(B-1)+ /(1 +~(8—-1))%2+4y
2y

NesH(7) =

e Finally, using this into the expression of Vyqu(7) (see Theorem 4) we obtain
the sum rate of our symmetric DS-CDMA system.

1
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Further Results on the i.i.d. Case

e Non-symmetric DS-CDMA: in this case, each user is affected by its own
pathloss/shadowing frequency-flat channel gain

y = SAx + z

e Assuming equal transmit power for each user, the sum-rate is given by

1 P
Vsrsh(v) = BVr(yn) + logg -1 y=sr=—, T= AA"
0
and, by Theorem 4 where n is the solution of
_1-n
1 —nr(yn)
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Linear Receivers

e Often practical receivers are constrained to perform linear single-user
processing.

e The general structure of a linear receiver for the vector Gaussian MAC
channel is

T = uly = (ullsp) Apzy, + Z(uzlsj)Ajazj + ul'z
ik
e The resulting SINR is given by

ujsk|* Tk
snr—tug |2 + 32, [0y's;[ T

sinr, =

56



e Among all linear receivers, the one that maximizes the SINR i stye linear
MMSE receiver, already discussed before. The resulting SINR is given by

1
Py

MMSE,

sinry, = —1=snrTys, [ I+snr) s;si'T | sp =% snrTy ngpgu(snr)

J7k

e Notice that if user £ was alone in the system its SINR would be equal to
its receiver SNR, snrT},. Hence, ngpgn(snr) collects the global effect of the
multiuser interference on each specific user k.

e Infact, ngpgr(snr) is referred to as the multiuser efficiency of the linear MMSE
receiver (this is how the name n-transform was originated in first place).
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e The achievable sum rate with linear MMSE is given by
Ram - = BE [log (1 + snrT ngpgu(snr))] = BVr (SNrngpgr(snr))
where T ~ Frp(t).

e Comparing the optimal sum rate with the sum rate achieved by linear MMSE
processing, we arrive at

1
Roym = R+ log—4+n—1

suIn

\ 7

non-linear gain

e In passing: this decomposition, observed to hold for a variety of non-
Gaussian inputs, AWGN channels, is at the basis of the “MMSE-I” identity
[Guo, Verdu, Shamai, “Mutual Information and Minimum Mean-Square Error
in Gaussian Channels,” IT 2005]:

d 1
d—I(X; VIX + 7)) = immse(X, VX + Z)
Y
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MIMO point-to-point

e The capacity of the MIMO channel with perfect CSIR and no CSIT is given
by
C(snr) = max I(x; Hx + z|H)
P(x):tr(,)<p

e Maximization of the mutual information:

I(x;Hx+zH) = h(Hx+z|H)— h(z)
= h(Hx+z|H) — N log(meNp)

|

where the upper bound is achieved by letting x ~ CA/(0, X,,).

1
< E [log I+ FHEIHH

0

e In order to obtain the capacity we have to solve a convex optimization
problem (maximization with respect to the convex set § = {3, : tr(X,) <

PY).
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e This maximization depends on the statistics of the channel matrix H.

e In the simplest case, H is formed by i.i.d. elements ~ CA/(0, 1) (normalized
independent Rayleigh fading).

e This distribution has the unitary invariant property: for any unitary matrix Q
independent of H, H and HQ are i.i.d.. It follows that

where D is the set of non-negative diagonal matrices with trace not larger
than P.

max K llog

1
I+-—HY H"
€S N,

0

] = max [ [log

1
I+-—HA_H"
A.eD N

0
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e Letting II, denote the M x M permutation matrix corresponding to the
permutation =, we have, forany A, € D

K llog

1
I+-—HA_H"
+ N

|

IA

IA

ﬁ ZE llog

K

K

1
I+ —HIIAJII'H"
No

|

1 1
T+—H|-— 1L AII'|H"

log

|

I+

log

P
HH"
oM

|

e This upper bound is clearly achievable by letting A, = (P/M)I.

e It follows that the MIMO capacity with perfect CSIR and no CSIT, under the
unitary right invariant condition for the channel matrix statistics, is given by

C(snr) =

snr
{log ’I + HHHH
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e For the i.i.d. Rayleigh fading case, we can compute this expression exactly
for finite M, N (complicated).

e Nevertheless, for large M, N with fixed ratio M /N = (3, we can quickly use
the previous developed results to have a very precise expression that yields
accurate results also for finite and small M, N.

_ 1
[ Let S — \/—NH’ then

sNnr
I+ —SS"

C(snr) =E llog 3

|

e Dividing by N, we obtain C'(snr) ~ Nc¢(snr) where

snr
I+~——SSH]
B
snr

1
= QPlog <1+—77> +log5+n—1

1
c(snr) = lim NE llog

N —o0

g
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where 7 is given by

 —(B+snr(8—1))++/(B+snr(3—1))>+48snr

= 2snr

e In order to see this, just notice that this coincides with the previous studied

case with T =T and v = 20T

e An example for N =3 and M = 2:

C(SNR)

é 10 12
SNR (dB)



End of Lecture 2



Lecture 3:
Matrices with Variance Profile



Structured Matrices H = CSA

e H=CSA, with Si.i.d. N x K as before (mean zero and variance 1/N, well-
behaved), Cand A are N x N and K x K suchthatD = CC"and T = AA"
have compactly supported LSDs. C, S, A statistically independent.

Theorem 5. Under the above conditions, as N — oo with K/N = 3,

NaaH(Y) = E [Fggr(D, )]

where I'ygh(d,y) is the unique non-negative solution of the following implicit

equation: |
-

L+ 95dE [1+vTE[DrHHH<D,v>]

and where D and T are independent RVs following the LSDs of D and T,

respectively. []

FHHH(da 7) —
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How do we solve the implicit equation? By discretization.

Define a suitable discretization {d; : : =1,...,m}and {t; : j =1,...,n} (the
supports of D andT are bounded).

For any v > 0, we obtain the coupled system of equations given by

1
qu’Y = m NE) izl""’m
) S S T TP G)
1

1+t 37 diT(ds, v) Po(i)’

T(t],’y) 17=1,...,n

This can be solved recursively, starting from the all-ones initial condition.

Sanity check: suppose D = I and T = I, then HH" = SS" such that
Naat(7) = Dagn(1,v) = 1, and we have




Theorem 6. Under the same conditions of Theorem 5 and S is unitarily
invariant, as N — oo with K/N = (3, the Shannon transform of HH" is given by

Vearar (1) = Vo(8a) + BVr () — 812
where v, and ~; are implicitly given by
% =1 —n1(n), % =1 —np(57a)

Furthermore, we have the alternative n-transform expression

Naat(Y) = 1p(874)
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Proof:

e We start with the alternative n-transform expression: using Theorem 5 we
have

1
(1) = E |15 | = m(5)

where we define

vt = YE[DI'ggn (D, 7)), (7)
and
v T

=K : 8
=B | ®)

e Multiplying both sides of (8) by ~;/~ we find

consistently with Theorem 6.
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e Using the expression of I'yy+(d,y) in Theorem 5, rewritten as

1
1 + Bdvq

FHHH(da 7) —

into (7), we find

T o
T 1+ GDvq ]’

which can be rewritten as

Vt7Vd
T =1 —np(B7a)

consistently with Theorem 6.
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e In order to prove the Shannon transform expression, we notice that

1 .
Vaun(y) = Jim = log [T +~CSTS"C"|]

1 _
— lim S [log I+7UAE/2VHSATSHVAE/2UHH

RN G 1/2 1/2
—  lim < |log [T+ 7Ag *SATSHAY H

. 1 i -
~  lim —~E [log|I+yHH H

= Vaan(7)
where H = A}/?SAY? is an independent but not identically distributed matrix

with element variance
_ dit;

B iyl = 5

e This is a special case of a more general class of matrices to be treated next
(TO BE CONTINUED).
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Structured Matrices H=A © S

LetH= A © S, where Sis N x K as before, and A is an element weighting
matrix with elements A; ; = /P, ;, such that P, ; are uniformly bounded and

Pi,j
N

E[|H; ;|"] =

We define the variance profile as the function v™ : [0,1) x [0,1) — R, such

that i—1 i\ [j—1 j
/UN(:Evy):Pi,ja for (JT,y)E [ N 7N> X [ K 7K>

As N — oo, we assume that vV (z,y) — wv(x,y) (uniform convergence),
where v(x,y) is bounded and measurable.

The function v(x, y) is referred to as the asymptotic variance profile of H.
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Theorem 7. Under the above conditions, as N — oo with K/N = 3,

Maar (7) = E [Tgn (X, 7))
with T'gyn(x, ) satisfying the system of coupled fixed-point equations

1
Capr(z,y) = 1+ BvE [v(z, Y) T (Y, )]
1

Tt (:7) = TR oK, ) T (o) 10

where X andY are independent RVs, uniform over |0, 1]. ]

Theorem 8. Under the above conditions, as N — oo with K/N = [, for any
a < bwitha,b e [0,1] we have

[ON ] . b
— Z (T+9HEY) |25 Ty, y)da
N 1bN | "’ a

where I'yyn(x, ) is defined by (9) - (10). ]
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Theorem 9. Under the above conditions, define the quantity

1

j—1 J

F(y,y) = h (IWL’VZhEh?) h;, T SY<
t#j

As N — oo with & = 8, F(N)(y,~) converges almost surely to the limit F (y,~),
given by the solution of the fixed-point equation

v(X,y
F(y7) =E B0 | el
L+~ fE [1+7F7(Y,7) ’X}
where X andY are independent RV, uniform over |0, 1]. O]

e For a proof of Theorems 7 and 8 see [V. L. Girko, Theory of Random
Determinants. Dordrecht: Kluwer Academic Publishers, 1990].

e For a proof of Theorem 9 see [ A. M. Tulino, A. Lozano, and S. Verdu, Impact
of correlation on the capacity of multi-antenna channels, Bell Labs Technical
Memorandum ITD-03-44786F, 2003].
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Theorem 10. Under the above conditions, as N — oo with K/N = j3, the
Shannon transform of the LSD of HH" is given by

Vaah(y) = BElog (1 +~vE[v(X,Y)ggu(X,v)[Y])]
+ E[log (1 + vBE[v(X, Y) Taun(Y,7)[X])]
— YBE [v(X, Y)gggn (X, ) Tign (Y, 7))

where I'ygyn(x, v) and Yy (y, v) are defined by (9) - (10). O

Proof:

e For simplicity of notation we drop the subscript HH" everywhere.

e By definition of Shannon transform, we have

V() = [ log(L+1N)dF ()
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e Taking the derivative with respect to ~, we have

V(’y) _ 1 —n(v)

gl

where we have used Theorem 7.

_ %(1 CE[L(X. 7))

e Using (9) - (10) and rearranging terms, we can write

1 —T'(x,7)

BE[v(x, Y)Y (Y, )]

v 1+ ByE[w(z, Y)Y (Y, )]

e Adding and subtracting to the right-hand side the term

BAE[ (2, Y)T (Y, 7))
L+ ByE[o(z, Y)T(Y, 7))

we obtain
Y dry

log (1 + ByE|[v(x

Y)TY, 7)) —

ByE[v(x

Y)Y Y, )]

1 4+ ByE[v

é

X

Y)Y, )]

76



e Integrating both sides with respect to =, we obtain

Diy) = E[%log(l+ﬂvE[U(X,Y)T(Yw)IXD]

—ﬁ’}/E {U(X, Y)T(Y, ’Y)F(Xa 7)}
where we used (9).

e We notice that

9 [0 T E(X )] = = (GE X, Y)Y, )E(X,)
+9E [o(X, Y)Y (Y, )P (X, )

+E (X, Y)Y, )T(X, )]
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e Using (10), we can write

E [0(X, Y) (57 (X, ) + T4 )L (Y )]

=K

(X, Y)(4T(X,7) + T(X, 7))

T B YT (X, A)IY]

E[0(X. V) (T (X, %) + T )Y

L+ 7E[u(X, Y)P(X,)[Y]
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e Replacing, we arrive at

V(v)

B [% log (1 + BvE[v(X,Y)T(Y,’v)IXD]

—5% (4B [0(X, Y) X (Y, 71)T(X, 7))
E [v(X, Y)(1T(X,7) + DX )Y
+AE

[+ AE[(X, V)T (X, 7) V]

e Integrating with respect to v and using V(0) = 0, we obtain

Vapr(7)

= PE[log (1 +~E[u(X, Y)Tgen (X, 7)[Y])]

+ E [log (1 + vBE[v(X, Y) Tgn(Y, v)[X])]

— YBE [v(X, V)T gpn (X, 7) Tign (Y, )]
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Continuation of the Proof of Theorem 6

e Recall that we showed that
VHuH (7 ) — VﬁﬁH (7 )
where H = A/?SAY? = (dtT) © S, such that

dz‘tj
N

E(|H;,[°] =

e This is a special case of the general variance profile structure, where the
limiting variance profile is separable, i.e.,

v(z,y) = d(z)t(y)

e We introduce the new quantities:

I'(v) =E[dX)T(X,7)], and T(y) =E[t(Y)Y(Y,7)]
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e Rewriting (9) - (10) in this case yields

N
" - BT i
N A2
T0) = E e 12

e Introducingthe RVs D = d(X) and T = t(Y), we can rewrite the above system
of equations as

[0 = s (1om (3970) (193

T = = (1-m (i) (14
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e Also, using the definition of Shannon transform, we have
E log(1 +yE[p(X, V)X, )[Y])] = E [log(l + va(v))} = Vr(yL'(9))
and
E [log(1 + yBE[v(X, Y)T(X, 7)[X])] = E [log(1 +¥8DT (7)) | = Vo(y8T(7))
and using separability and the fact that X and Y are independent, we have

YBE[L(X, Y)L (X, M) Y(Y,7)] =v8L(7)Y(7)

e Eventually, defining

v =~T(7), and ~4=~Y(y)

and putting everything together, we obtain the desired result.
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A Particularly Simple Case: Doubly-Regular Matrices

o Asymptotic row regularity: if the variance profile P; ; of H satisfies (for all
a € R)

K
1 :
= E H{FP; <a} — G(a), forallrows i
o Asymptotic column regularity: P; ; of H satisfies (for all o € R)

N
1 :
~ E 1{P,; <a} — G'(a), forallcolumns j

e The matrix is both asymptotically row regular and asymptotically column
regular, we say that it is asymptotically doubly regular. In this case

[{IEHOO—ZPZJ = lim _ZP’J

N—oco N
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e If the above limits are equal to 1, we say that the variance profile is standard.

Theorem 11. Consider a matrix H in the same conditions of Theorem 7, such
that its variance profile is standard asymptotically doubly regular. Then, the LSD
of HH" coincides with that of SS" (as if the elements of H were i.i.d.). ]

Proof:

e Combining (9) and (10), we have

NaaH (Y) = E [Tggn (X, 7))

with

FHHH(%V) =

v(x,Y)
1 + 67E 1+7E[U(X’Y)FHHH (Xaf)/)lY]

e We neglect again the subscript HH" for simplicity of notation, and notice that
because of the column regular condition we have that

Ev(X, ) TX,y)] =ply), Vy
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e Also, because of the row regular condition we have that

v(z,Y) ] _E [ v(z,Y) ] _ Elv(x,Y)]
L+ 2B [o(X, Y) g (X, ) Y] L+yu(y)]  1+u(y)

is independent of .
e We conclude that I'(x,v) = I'(v), independent of .

o Letting pu(vy) = E[p(X,y)I'(X,7)] = T'(v)Elp(X,y)] = I'(y), since by the
standardization condition we have

Elo(X,y)] = E[v(z,Y)] =1

we arrive at ngyt(y) = I'(v), where

same as the key equation (5) of Theorem 4 for the matrix SSH.
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End of Lecture 3



Lecture 4:
Multi-Cell Wireless Networks



Multi-Cell Network Model

88



Discretization of the Users Distribution

user user user user user user I

group 1 group 2 group 4 group 8 group 6 group 5

N /
N Y

cell1 cell 2

e We assume that the users are partitioned in co-located groups with NV single-
antenna terminals each.

e We have A user groups per cluster, and clusters of B cells.

e We have M = pN base station antennas per cell.
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Multiuser MIMO Downlink

e One channel use of the multi-cell MU-MIMO downlink is described by

H
Y = E Oém,ka’ka + ng,
m

for each user location k.

e H,, . is the pN x N small-scale fading channel matrix from the m-th BS to
the k-th user group, with i.i.d. ~ CA(0,1) elements.

e The per-BS average power constraint is expressed by tr (Cov(x,,)) < Py,.
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e We consider cooperating clusters of BSs (or sectors), such that each
cooperating cluster jointly process its signals and serves its user locations
using MU-MIMO, and take interference from other clusters.

e More in general: we can consider a multi-band architecture where different
intertwined patterns of cooperating clusters are defined for each subband,
in order to symmetrize the user performance and avoid “locations in the
boundary” on the whole system bandwidth.

e For a given location k£ in the reference cluster M, the Inter-Cluster
Interference (ICl) plus noise variance at any user group k is given by

2

1
or =E N Z ozm,kHij%kxm + ny =1+ Z a?n’kPm.
mé& M mé& .M




e Letting A and B denote the number of user locations and BSs in the reference
cluster M, and re-normalizing the signal at each user location & by o, such
that its ICI plus noise variance is 1, we obtain

- G1aHy, - BraHia
H = . -

O1HB1 -+ O aHpa

. (84
with 8,k = ;;""

e |t follows that from our reference cluster point of view, the relevant downlink
channel model is given by

y:HHx+V (15)

with y = C*Y, x = C*PY  and v ~ CN(0,1).
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Gaussian Vector Broadcast Channel: A Primer

Vector Gaussian BC:
y = H'x + 7

[Caire-Shamai, IT 2003, Viswanath and Tse, IT 2004, Vishwanath, Jindal
and Goldsmith, IT 2004, Yu and Cioffi, IT 2004, Weingarten, Steinberg and
Shamai, IT 2005].

Let w denote a precoding order, such that signals are encoded in the order
m(K),m(K —1),...,7(1).

The Dirty-Paper Coding (DPC) achievable region R4P¢(H; S;.x) is given by
the set of rate points (R, ..., Rx) such that

k

L+ b7, (ijl Sw(j)) L)
k—1

1+ h7Hr(k) (ijl Sw(j)) hy (k)

Rﬂ'(k) < log
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e The capacity region of the vector Gaussian BC subject to any convex
covariance constraint E[xx"] € S is given by

( )

CP°H;S)=coh<| ] () RFP(H;S1x)

K
\ T 3 k—1SkKES

/

e For the sum power constraint, the set S is given by {3, < 0:tr(¥,) < P}.

e Similarly, we can consider per-antenna power constraint, per group of
antenna power constraint, or more general linear constraints in the form

tr(3X,®,) <Py, £=1,...,c
for some ®, < 0 constraint matrices.

e How to calculate points on the boundary of C(H; S)? Uplink-Downlink Duality.



Consider the “dual” vector Gaussian MAC:

r=Hs+w

Let 7 denote a successive decoding order, such that users are decoded in
the order 7 (1), 7(2),...,7(K).

The Successive Interference Cancellation (SIC) achievable region R%°(H; ¢1.x)
is the set of rate points (R, ..., Rx) such that

K
|I + 2=k hﬁ(j)h:lr(j)QW(j)‘

K
‘I T2 ikt hw(j)h:(j)qw(j)‘

Rw(k:) < log

It is well-known that the MAC capacity region for user powers q,...,qxk IS
given by

CMAC(H; (]1:K> — coh {UR?TIC(I—L Ch:K)}

T
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Duality subject to sum power constraint: for S = {3, <0 : tr(X,) < P} we

have
C°H;8) = | AMCHiquk)

K
D k=1 WSP

It turns out that it is much easier to compute boundary points on the MAC
capacity region than on the BC capacity region.

This is due to the fact that for fixed powers ¢4, ..., gk, and channel matrix H
the MAC capacity region is a polymatroid.

Weighted sum-rate maximization for the MAC:
maximize Z Wi Ry,
k

subjectto  (Ri,...,Ri) € CMA°(H; ¢ k)



Result: the solution is the vertex 7 that orders the weights in increasing order,

l.e.,
Wea) S Wre) < - < Weik)

In this case, the objective function become

Mw

K
sic H
> W By (H; q1.x) Weky = Wag—1)) log [T+ ) heyh g
k=1 k:l j=k

where, for convenience, we let 7(0) = 0 and Wy = 0.

In this way, we get rid of the combinatorial problem of choosing the optimal
decoding order (otherwise we have to search over all K'! orders).

Since the resulting function is concave, the optimization with respect to the
input powers q1, ..., gk is easily accomplished.



Back to our case ....

e The case of per-antenna or per-group of antennas power constraint is
more involved: see [W. Yu and T. Lan, “Transmitter optimization for the
multi-antenna downlink with per-antenna power constraints,” Transactions on
Signal Processing, 2007].

The boundary of the capacity region of the Vector Gaussian BC (15) for
fixed channel matrix H and given per-group-of-antennas power constraints
{P1,...,Pp} can be characterized by the solution of a min-max weighted
sum-rate problem.

By symmetry, we restrict ourselves to the case of identical weights for users
In the same group.

Let Wy, and R;,(H) = + Z,fil Ry ;(H) denote the weight for user group k£ and
the corresponding instantaneous per-user rate, respectively.
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Let = denote the permutation that sorts the weights in increasing order W, <
o < W,

Let H;, denote the k-th pBN x N slice of H.

Let Q;, = diag(qx.1,---,qx n) denote an N x N non-negative definite diagonal
matrix of the dual uplink users’ transmit powers.

Let Q = diag(Qi,...,Q4) and, for given permutation =, let Hy.4» =
H,, ...H.,|and Q.4 =diag (Qx,, .-, Qxr,)-

The rate point { R, (H, W1,...,W4)} on the boundary of the instantaneous
capacity region corresponding to weights {Wi,..., W4} is obtained as
solution of the min-max problem

A

r}{l;(l) max 2 Wa, R, (H) (16)
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where the instantaneous per-user rate of each group takes on the expression

Ry (H) = < log ) + HicaQres o ‘ »
‘E(A) — Hk+1:AQk—|—1:AHk—|—1:A’

N
where () is a pBN x pBN block-diagonal matrix with pN x pN constant
diagonal blocks A, I,n, for m = 1,..., B and the maximization with respect
to Q is subject to the trace constraint

B
tr(Q) < > AP
m=1

e Lagrange Multipliers: The variables A = {\,,} are the Lagrange multipliers
corresponding to the per-group-of-antennas power constraints.

e Ergodic capacity region (inner bound):

C(Py,...,Pg)=coh | | {R:0<R; <E[Ry(H,Wi,.... Wy,
Wi,...,W4>0

szl,...,A,Wzl,...,N} (17)
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e Fairness scheduling problem: let U(R) denote a strictly increasing and
concave network utility of the ergodic user rates. Then:

maximize U(R)
subjectto R € C(P4,..., Pp) (18)
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Workplan

¢ In finite dimension, by applying the already mentioned stochastic optimization
framework, the solution R* of (18) can be approached by solving a sequence
of instantaneous weighted sum-rate maximizations.

e In the large system limit, N — oo, we can directly compute R* by combining
asymptotic RMT and convex optimization.

e Preliminary problem: for fixed A\, solve

}E()\) + Hk:AQk:AHZ:A‘
‘E()\) + Hk—l—l:AQk—l—llAHII;l—Fl:A‘

subjectto tr(Q) < @ (19)

A
. 1
maximize g_lwmﬁE log

where Q £ 8 AP,
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Solution for finite V

o Letting A, 2 W, — W,
written as

., With W, = 0, the objective function in (19) can be

1

A
1
F A(Q) = > A log |S(A) + Hy:aQuaHy 4 |] — W~y log SN
k=1

e The following results follow from the symmetry of the problem:
Lemma 1. The optimal Q in (19) allocates equal power to the users in the
same group. []

Lemma 2. The optimal \* for the min-max problem (16) are strictly positive,
ie., \* > 0. []
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e We can restrict to consider Q with constant diagonal blocks Q. = %I.

o We define the modified channel matrix H, = VLNE_”Q(A)H;? and rewrite the
objective function as

A A
1 -
FW,)\(Qla o, Qa) = ZAkﬁE log |1+ ZHWHMQW

k=1

subject to the trace constraint 327, Qx < Q.

e The Lagrangian function of our problem becomes

A
LQ1,. . Qas&) = Fyy \(Qu.....Qa) — & (ZQk - Q>
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e Using the differentiation rule dlog|X| = tr(X~!'9X), we write the KKT

conditions as

. [ _1 —
oL LAy __H S H —
0 = ~E|tr [ H L+ ZHMHWQM] H,. || <¢
J k=1 i =k i
forj =1,..., A, where equality must hold at the optimal point for all j such
that Q, > 0.

e After some algebra and the application of the matrix inversion lemma, the
trace in the KKT conditions can be rewritten in the more convenient form

1

—tr

N

A
—H —
(1)
=k
1 —H 1 ==
Ntr (Hﬂj@k: ayH
1 — MMSE,

—1
—H
7TgH7r€ Qﬂ'g]

H,.
j

_H 1 == —1
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— =—=H
where we let ©. 4\ ; = I+ Zf:k#j H.H_ Qr,.

o MMSE,(jB4 denotes the per-component MMSE for the estimation of s; from

r(;. a5, for fixed (known) matrices H,, ..., H.,, for the observation model

I
ME

ﬁﬂ'gsﬁ + Z, (20)
=k

where sg,skx11,...,84 and z are Gaussian independent vectors with i.i.d.
components ~ CN (0, 1).

e Explicitly, we have

- 1 H H —1
MMSE(), = —tr (I ~ Q. H, [ijHﬂjij +Opay] Hﬁj)
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e Solving for the Lagrange multiplier, we find

A 14
ZZ E[MMSE("),])

E: k=1

e Finally, we arrive at the KKT conditions

7 Ag(1 - E[MMSE,])
Z?:l Zi:l Ak(l — E[I\/II\/ISE,&Z])

for all § such that Qﬂj > 0.

ij — (22)

o Forall j such that Q.. = 0, the following inequality must hold

J A /
Q). %E r (H, 004 Hy )| <303 A1 - EMMSEY)  (23)
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Theorem 12. The solution Q7, ..., Q% of problem (19) is given as follows. For
all 5 for which (23) is satisfied, then Q;J, = 0. Otherwise, the positive Q;J, satisfy

(22). ]

e In finite dimension, an iterative algorithm that provably converges to the
solution can be obtained.

e The amount of calculation is tremendous because the average MMSE terms
must be computed by Monte Carlo simulation.

e In the limit for N — oo, this is greatly simplified because the arguments of
the expectations converge to deterministic quantities, that we can compute

directly.
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Large system limit N — o

Normalized row and column indices r, ¢ € [0, 1).

A

Aspect ratio of the matrix v = 5

Q(t): (dual uplink) transmit power profile:

k—1 k
<t<-—.

Qt) = Qm,  for — Y

G(r,t): channel gain profile:

2
g(T,t) = )\’ K fOr mT S r << g, A Z
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e (.4(t): average per-component MMSE profile:

Op.a(t) = MMSEY),  for —<t<l
o [ 1.a(t): SINR profile: 1
F .a(t) = -1
k:A(t) SO

Theorem 13. As N — oo, foreach k = 1,..., A, the SINR functions F j,. (t)
satisfy the fixed-point equation

Foalt) = /0 pBG(r; 1)QE) dr (24)

1 BG(r,7)Q(7) dt
L+ f(k—l)/A - 1+F g a(T)

Also, the asymptotic Q. (t) is given in terms of the asymptotic F .4(t) as
Qpea(t) = 1/(1 4+ Fg.a(t)). N
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Proof:

Consider the dual uplink model (20)

A
Z Qﬂ'g €—|_Z

=k

The SINR for any user in group £ < 5 < A, is given by
—1
—H A — —H —
Sinfz; ~ Qr by (I + Y HwHwa> h,.
¢ J

We apply Theorem 9, with the caveat that the variance profile of the matrix
{Hy, : =k, ..., A} is given by

[ pBG(r,t)Q(t) for i1 <t <
v(r’t)_{o for 0 <t < b
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e Using the fact that all these profile functions are piecewise constant, and
defining

Fk:A(t):F](j;ll, for%§t<%, i >k
we obtain
Fih=r iy 2y (25)
11 4+ Zf . (5m W/)\Zn)Qwe
D

e We also let the MMSE quantities of interest be given by

1

Q(J:) _
k:A 1+ F(])

e Finally, we obtain a simple iterative algorithm to compute the optimal power
allocation profile for given weights {W;.} and Lagrange multipliers {\,,}.
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Power optimization in the large system regime

e For notation simplicity we let =, = k for all & = 1,..., A (arbitrary = is
immediately obtained by reordering).

e Initialize Qx(0) = Q/Aforallk=1,..., A.

e For:=0,1,2,..., iterate until the following solution settles:

_ 1 A1 = ()
Zf:l Zi:l Ak(l - Ql(fll(/”))

Q;(i +1) (26)

forj =1,..., A, where Q,&&(z’) =1/(1+ F,(gll(i)), and F,(C&(i) is obtained
as the solution of the system of fixed point equations (25), for powers @ =

Qr(7), Vk.
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e Denote by F,(ﬁ(oo), Q,g&(oo) and by @ ;(co) the fixed points reached by the
iteration at step 2). If the condition

j

QD ArFh(00) < 30D Ay (1 -0 (00)) 27)
k=1 (=1 k=1

is satisfied for all 7 such that @,;(c0) = 0, then stop.

e Otherwise, go back to the initialization step, set ?,;(0) = 0 for j corresponding

to the lowest value of 327 _, Apf ,&’34(00), and repeat the algorithm starting
from the new initial condition.
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Computation of the asymptotic rates

e The average rate of users in group k is given by

A
1 o
] ——E |log|T+ Y H,H_Q

e In the limit for N — oo, we can use the asymptotic analytical expression for
the mutual information given in Theorem 10, adapted to our case.
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o After identifying terms, we obtain

A B
— 0D > (B, Am) Q5 T Y (29)
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e Foreachk=1,... A, {I',:m=1,...,B}and {Y,: ¢ = k,..., A} are the
unigue solutions to the system of fixed point equations

1

m — A N )
1 + ZEZkJ Qﬂ'g( TZn,ﬂ'g/)\m)Tg
1

1 + P Zm:l Qﬂ'e( %@,Wﬁ/ATﬂ)Fm

I

m=1,...,DB,

T, =k ... A (30)

e Although (29) is not in a closed form, {I',,,} and {Y,} in (30) can be solved
by fixed point iterations with A + B variables, that converge very quickly to
the solution to any desired degree of numerical accuracy.
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Minimization with respect to A\

In finite dimension and fixed channel matrix, the min-max problem can
be solved by an infeasible-start Newton method. See [H. Huh, H. C.
Papadopoulos, and G. Caire, Multiuser MISO transmitter optimization for
intercell interference mitigation, Transactions on Signal Processing, 2010].

A direct application to the large system limit requires asymptotic expressions
for the KKT matrix, involving the second-order derivatives of the Lagrangian
function with respect to {Qx} and A: not amenable for easily computable
asymptotic limits.

Idea: let Gw(A\) denote the solution of (19). This is a convex function of A
and the minimizing A* must have strictly positive components by Lemma 2.

Therefore, at the minimizing A* we must have 27% sy = 0forallm =

1,---, B (solution is calculated by descent gradient iteration).
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e Obvious upper bound: let A\, = 1 forall m = 1,..., B. This corresponds to
relax the per-BS power constraint to a per-cluster power constraint.

e We can prove that under certain symmetric conditions this bound is tight. In
particular, if the channel gain matrix 8 = {3,, 1} can be partitioned into a
number of B x B strongly symmetric blocks, then the minimum is found at
Ay, = 1 for all m.

e Example for A =8, B = 2:

l user user . . . .. user user . . . .. user user !

group 1 group 2 group 4 group 8 group 6 group 5
N )

Y Y
cell 1 cell 2
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e The channel gain matrix takes on the palindrome form
8= a b b a f e d c
| f e d c a b b a

e This can be decomposed into the 4 strongly symmetric blocks

Goal L) o] 20

120



Computing the fairness rate point by convex optimization

e Recall the general dynamic optimization policy (fairness scheduling).

e Let Wy ;(t) denote the virtual queue backlog for user i in group k at time slot
t, evolving according to the stochastic difference equation

Wii(t +1) = [Wiea(t) — Reo(H(2))] . + Ag,a(2)

e At each time slot ¢, solve the weighted sum-rate maximization problem

A N
maximize Y Y Wyi(t)Rei(H(t))

k=1 1=1
subject to tr(E[x,,x]) < P, (31)
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e The virtual arrival processes are given by A ;(t) = aj, ;, where the vector a*
is the solution of the maximization problem:

A N
maximize VU(a) — » > ar:Wii(t)
k=1 1=1

subjectto 0 < ag; < Apmax (32)
for suitable control parameters V' > 0 and A, > 0.

e The long-time average rates
1
lim = " Ry ;(H(t))
T—00 T
t=1

are guaranteed to converge to the optimal ergodic rates Rj ; within a gap
factor O(1/V), while the expected backlog of the virtual queues increases as
oV).
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We restrict the network utility function U(-) to be symmetric for users in the

same group and Schur-concave.

Hence, equal average rates for users in the same group is optimal (R; , =

Ry).

’1,

The optimum is found on the boundary of the region C(Pi,...,Pg),
parameterized by the weights {W1,..., Wa}.

We rewrite (18) using the auxiliary variables r = [rq, . ..

min max U(r)
A 1,Q,m

: 1
subjectto 1, < N]E

tr(Q) < Q,

‘I+Z€ kﬁ ﬁWgQWE

,T 4] @S:

log
’I+Ze k+1 Hr, WQW

A>0

(33)
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e The Lagrange function for (33) is given by

LA, Q,m,W) =
A I+S4  H, ﬁ Q
1 ‘ =k Ty T
U(r) — Z Weo | 7rp — NE log T
k=1 ‘I + ZE k+1 7T£ WQM
A
= U(I‘) — Z Wka
fw (r)
A I+ 4 H, ﬁ Q
1 ’ =k T T
+ W |log — (34
N ‘I A H Q
k=1 {=k+1 7T£ Uy 7T£
hW(A7Q77T)

e The Lagrange function can be decomposed into a sum of functions of r only,
denoted by fw(r), and a function of A, Q and = only, denoted by hw (A, Q, 7).
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e The Lagrange dual function for the problem (34) is given by

G(W) = minmax L(\,r,Q, 7, W)

A\ r,Q,m
— max fw(r)+m)i\nrgax hw(X, Q, ) (35)

=~ N J/

(a) RS

and it is obtained by the decoupled maximization in (a) (with respect to r)
and the min-max in (b) (with respect to A\, Q, 7).

e Notice that problems (a) and (b) correspond to the static (deterministic time-
invariant) forms of (32) and (31), respectively, after identifying r with the
virtual arrival rates A (¢) and W with the virtual queue backlogs W (t).

e Finally, we can solve the dual problem defined as

min G(W) (36)

via inner-outer subgradient iterations:

125



Inner Problem: For given W, we solve (35) with respect to A, r, Q and .
This can be further decomposed into:

1. Subproblem (a): Since fw(r) is concave in r > 0, the optimal r* readily
obtained by imposing the KKT conditions.

2. Subproblem (b): Taking the limit of N — oo, this problem is solved by the
iterative algorithm given before for fixed A > 0.

Outer Problem: the minimization of G(W) with respect to W > 0 can be
obtained by subgradient adaptation.

1. Let A%, 7*, Q* and r*(W) denote the solution of the inner problem for fixed
W.
2. For any W', we have

G(W') = max fwi(r)  max hw (X7, Q, )
> fw(r"(W)) + hw(A", Q" ")

A
)+ > (W, Rj,(W) — re(W)) (37)

k=1
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where R; (W) denotes the k-th group rate resulting from the solution of
the inner problem with weights W, which is efficiently calculated by the
iterative algorithm in the large-system regime.

. A subgradient for G(W) is given by the vector with components R; (W) —
. The dual variables W are updated at the n-th outer iteration according to

Wi(n+1) = Wi(n) — p(n) (R,(W(n)) —rp(W(n))), Vk

for some step size u(n) > 0 which can be determined by standard efficient
methods.
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Proportional fairness scheduling

e The network utility function for PFS is given as

A
U(r) = Z log(rg)

e Inthis case, the KKT conditions for the inner subproblem (a) yield the solution

e Observation: the dual variables play the role of the virtual queue backlogs in
the dynamic scheduling policy, while the auxiliary variables r correspond to

the virtual arrival rates.
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e At the n-th outer iteration these variables are related by

e The virtual arrival rates of the dynamic scheduling policy are designed in
order to be close to the ergodic rates R* at the optimal fairness point.

¢ It follows that the usual intuition of PFS, for which the scheduler weights are
iInversely proportional to the long-term average user rates, is recovered.
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Max-min (or “Hard”) fairness scheduling

e The network utility function for HFS is given as

e This objective function is not strictly concave and differentiable everywhere.
Therefore, it is convenient to rewrite subproblem (a) by introducing an
auxiliary variable ¢, as follows:

d,r>0

A
max o — E Wkrk
k=1

subjectto r. >4, VEk (38)
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e The solution must satisfy r, = ¢ for all &, leading to

A
max (1 — Z Wk)(5
k=1

0>0

e Since the original maximization is bounded while the above may be
unbounded, we must have that Z;j:ka = 1 and § must enforce this
condition.

e The subgradient iteration for the weights W, using r;(W(n)) = 6*(W(n)),
becomes

Wi(n +1) = Wi(n) — p(n) (R(W(n)) = 0"(W(n))), vk
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e Summing up the update equations over k£ =1, ..., A and using the condition
that Zﬁzl Wi(n) =1 for all n, we obtain

A
W) = 5 (W(n) = > B (W(n), ¥

e Intuitively: this creates the same arrival process for all the virtual queues,
which naturally yields the same service rate (for stability) and therefore the
equal-rate point on the boundary of the ergodic capacity region.
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Numerical Results: PFS, two cells

Group rate (bps/Hz)

12 . T T T
X — % — Finite—dim. DPC, N=1
10 - —%— Finite—dim. DPC, N=2 .
~+ - Finite—dim. DPC, N=4
81 —O— Large system limit .
6 i
4t i
5 Full cooperation
No cooperation
0 1 1 1
-1 -0.5 0 0.5 1

Group location (km)

PFS with p = 4 and K = 8 in a 2-cell linear layout.
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Numerical Results: HFS, two cells

Group rate (bps/Hz)

=
N

[
o
T

o
T

— % — Finite—dim. DPC, N=1
-—¥— Finite—dim. DPC, N=2
-+ Finite—dim. DPC, N=4
—O— Large system limit

“~Full cooperation

== =8 — 8

Y\No cooperation

HFS with p = 4 and K = 8 in a 2-cell linear layout.

0 0.5
Group location (km)
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2-dimensional 7-cell, 21 sectors, 84 user groups model

main antenna lobe
of sector 1

base |
stations

user group

(b) Wrap-around torus topology

(a) No cooperation (b) three-sector cooperation within each (c) Full cooperation over 7 cells

cell
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Asymptotic group rate (bps/Hz)

N W R~ O

\
i ’\‘\N

Asymptotic group rate (bps/Hz)

same-cell sector cooperation

| /"{'9,}’02%/;‘&\"'0 /

i l
. % I

full 7 cell cooperation
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End of Lecture 4



Lecture 5:
Downlink Beamforming



Multi-Cell Network Model
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Discretization of the Users Distribution

user user user user user user I

group 1 group 2 group 4 group 8 group 6 group 5

N /
N Y

cell1 cell 2

e We assume that the users are partitioned in co-located groups with NV single-
antenna terminals each.

e We have A user groups per cluster, and clusters of B cells.

e We have M = pN base station antennas per cell.
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Multiuser MIMO Downlink

e Channel model for the cooperative cluster MU-MIMO model is exactly as
already introduced before.

e Letting A and B denote the number of user locations and BSs in the reference
cluster M, and re-normalizing the signal at each user location & by o, such
that its ICI plus noise variance is 1, we obtain

511 Hy, -0 BraHia
H = - . -

OpaiHp1 -+ 0OpaHpa |

with 3., x = “g:’f.
e |t follows that from our reference cluster point of view, the relevant downlink
channel model is given by
y =H"'x+v
with y = C*Y, x = C*PN and v ~ CN(0, I).
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Linear Zero-Forcing Beamforming: A Primer

A simple alternative to DPC: linear ZF beamforming (ZFBF).

Assume H M x K tall and full column rank. Then, we let

X = VQ1/2u

u € C* contains the users’ information-bearing code symbols (downlink
streams), with E[uu"] = 1.

V is the precoding matrix with unit-norm columns.

Q is a diagonal weighting matrix that contains the power allocated for each
downlink stream.
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e The ZFBF precoding matrix is obtained as
V=HtA"Y?

where
H™ = HH"H)™!

is the Moore-Penrose pseudo-inverse of the downlink channel matrix H",
and where the column-normalizing matrix A has elements

1

o (HH) ]

k. k

e The resulting ZFBF-precoded downlink channel is given by
y = A1/2Q1/2u—|—v

where inter-cluster multiuser interference is completely removed.
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ZFBF in the Large System Regime

e Suppose that H is a matrix with variance profile, with N — oo and K/N = (.

Theorem 14. (Corollary of Theorem 9) Defining the effective dimension ratio

as

- P(E[p(X,Y)[X] #0) o
and let F (y,~) be the function defined by Theorem 9. As ~ goes to infinity, we
have

lim F(y,v) =

Y —00

Woo () if g’ <1
{ 0 ifg >1 (39)

where, for v’ < 1, ¥ (y) is the positive solution to

1+ vE [\;g(\% | X}

Uo(y) =K
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e We wish to characterize the asymptotic expression (for large N) of the ZFBF
channel coefficients A;.

e Using the well-known formula for the inverse of a 2 x 2 block matrix, we can
write the (k, k) diagonal element of the matrix (I + yH"H)~! as

(1+oH'H) | = =

k.k
1+hy [I+~) hh| hy
04k
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e Furthermore, assuming that H has full rank, then

[(HHH)_l} _ limy[(IJrvHHH)_l}

k.,k Y— 00 k,k

Y

= lim
Y—00

1+~h (I+7) hhy| b
04k
1

—1

lim byl [ I++) hehy'| b
T £k

e Comparing the definition of A, with the above expression and using Theorem

14, we have that
lim Ap = lim F(y,7) = Uuo(y),

N —o0 y— 00

for L <y < £ e, for k = [yK], withy € [0,1).
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Network Utility Maximization (.... again)

e We follow the already mentioned approach of NUM.

e For a concave non-decreasing network utility function U(-) of the user
average rates, we wish to operate the system at the point solution of:

maximize U(R)
subject to R € Ruwe( P, - .., PB)

where R (P41, ..., Pp) is the ergodic rate region achievable by ZFBF.

e As before, we start by considering the instantaneous weighted rate sum
maximization:

A N
maximize ) )~ wiYRY
k=1 1=1
subjectto R € R, ae(H)
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The solution is generally combinatorial, since it requires a search over all
user subsets of cardinality less or equal to pBN.

Well-known approaches consider the selection of a user subset in some
greedy fashion, by adding users to the active user set one by one, till the
objective function cannot be improved further.

User selection involves learning the channel from many users, and selecting
a subset: very inefficient in terms of CSIT feedback.

We shall develop a scheme where users are preselected statistically, and
only the pre-selected users feed back their CSIT.
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Some simplifying assumptions

The scheduler picks a fraction u of users in group k& by random selection
inside the group, independent from slot to slot.

The ZFBF precoder is obtained by normalizing the columns of the Moore-
Penrose pseudo-inverse of the channel matrix, although this choice is not
necessarily optimal under the per-BS power constraint.

Let o = (i1, ..., pna) denote the fractions of active users in groups 1,..., A,
respectively. For given u, the corresponding effective channel matrix is given

by ) ]
GiaHy (1) -+ BraHia(pa)
Hl*l' = : :

| B, Hpi(p1) -+ BpaHpa(pa) |

The user fractions must satisfy p, € [0,1] foreach £k = 1,..., A and p 2
p1:4 < pB where we introduce the notation 1., = S5_, p;.
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ZFBF Channel for given user fractions u

e Operating as before, we have
yp = A%le/Qu +zp

where A,(:)(u), the diagonal element of Ay in position p1.,_1 N + i, for i =
1,...,urN, is given by

1

[(HZHM) _1]

AI(;) (H’) — (3)

k

e The optimization for the parallel channel model is still involved, since the

channel coefficients A?(u) depend on the active user fractions p in a
complicated and non-convex way.
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Power allocation for fixed

o We divide all channel matrix coefficients by v N and multiply the BS input
power constraints P,, by N, thus obtaining an equivalent system where the
channel coefficients have variance that scales as 1/V.

o Let q,(f) denote the diagonal element in position u.._1N + 7 of Q,
corresponding to the power allocated to the ¢-th user of group «.

e Sum-power constraint:

where Pyym = 52 _, Pp..
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e Per-BS power constraint: let ®,, denote a diagonal matrix with all zeros, but
for pN consecutive ones, corresponding to positions from (m — 1)pN + 1 to

mpN on the main diagonal.

e The per-BS power constraint is expressed in terms of the partial trace of the
transmitted signal covariance matrix as

1 H
~tr <<I>mVHQVu) <P. m=1,....B

or, more explicitly,

A ppN

ZZqS)Hﬁi{k < P,, m=1,...,B

k=1 1=1

where we define the coefficients

mpN 5

> |Vuli

l=(m—1)pN+1

=z~

0\, (n) =
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and where |V | ézi denotes the element of V, corresponding to the ¢-th row
and the (p1.x—1 N + ¢)-th column.

With ZFBF precoding, optimization w.r.t. {q,(f)} for fixed p and weights yields

A ppN
maximize ) )~ Wi log(1 + A (1)g)”)
k=1 1=1

subject to either the sum-power or the per-BS power constraint.
Sum-power = Waterfilling.
Per-BS power — Easy Lagrangian dual/subgradient iteration solution.

The Lagrangian is given by (dependency on p is dropped for notation
simplicity)

A ppN

L(q,\) = Z Z Wéi) log(1 + A,gi)q,ii)) — ' [©q - P]
k=1 i=1
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where A > 0 is a vector of dual variables corresponding to the B BS power
constraints, ® is the B x uN matrix containing the coefficients Hffb)k and P =
(Pr,...,Pg)".

e The KKT conditions are given by

oL 5o AY ;
=W T A <O
dq, 1+A, g,

where 9,@ Is the column of ® containing the coefficients 97(,,?,€ for m =
1,...,B.

e Solving for ¢\”, we find

(%)
ATe) Al
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e Replacing this solution into £(q, A), we solve the dual problem by minimizing
L(q(N), A) with respect to XA > 0. It is immediate to check that for any A" > 0,

L{a(X), X) = L{a(X), X)) = (X = X) (P — ©q(A)) + L(a(A), A)

e Therefore, (P — ®q(\)) is a subgradient for L(q(\), v).

e It follows that the dual problem can be solved by a simple B-dimensional
subgradient iteration over the vector of dual variables .
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Large system limit for Ay ()

e Welet N — oo, when p, A, B, and u are fixed.

e The large system limit expression for the coefficients A,(f)(p,) and given by

Theorem 15. Foralli=1,..., u;N, the following limit holds almost surely:
(1)
Jim A () —pZBmwm
where (ni1(w),...,ns(p)) is the unique solution in [0,1]8 of the fixed point
equations )
nmﬁgv,,q
nm:]—_zluq B 5 :17 7B

q=1 pZ£:1 neﬁﬁ,q
with respect to the variables n = {n,, }. (]
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Proof:

e From Theorem 14 and the following observations, we have that

lim A () = Woo (),

N — 00
evaluated at y such that

:ulzk—lN +1—1 < :ulzk—lN +1
=Y <
N N

after replacing the general matrix H with H,, given by our problem.

e Notice that the dimensions of H;, are pBN x uN and that © < pB by
construction.

e The matrix Hy, is formed by independent blocks H,,, 1 (1) of dimension pN x
N, such that each block has i.i.d. CN(0, 57, ,/N) elements.

e As N — oo, we have that the aspect ratio is v = p% <1.
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e The asymptotic variance profile of Hy, is given by the piece-wise constant
function

m—1m H1:k—1 M1:k
U(ﬂ?,y) :IOBﬁ’I%’L,k for (f,y) S [ B 7B) X [ 1 y 1 )

withm=1,...,Bandk=1,...,A.

e Also, we find explicitly

/
YV =

it {5 Sinmt Ak £ 0]
1%
£y | {% et HkBm b # O}

and notice that the case v/ < 1 always holds since, by construction,
rank(Hy,) = uN.

e As a matter of fact, the piece-wise constant form of v(z, y) yields that A,ff)(u)
converges to a limit that depends only on k (the user group) and not on i (the
specific user in the group).
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This limit, indicated by A, (u) = ¥ (y) fory € [“ﬁj‘% “L’f) is given by

In order to obtain the more convenient expression of Theorem 15, we
introduce the variables n,, € [0,1], form = 1,..., B, and replace Ax(u) =

B

Since n,, takes values in [0, 1], we can write n,,, = 1/(1 + z,,) for z,, > 0, and
2

solving for z,,, we obtain z,, = 2;4:1 uq%.

Eliminating the variables z,, from the latter equation, we arrive at the desired
fixed point equation.
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Constant power on each user group

e Since the users in group k£ have identical Ax(p), independent of ¢, by
symmetry we have that q( D = = ¢y, for all active users in group k.

e Using this in the per-BS constraint, we obtain

A
ZQka,k(,Lb) <P, m=1,...,B,
k=1
where
PN Mk;N mpN

i) = Y 0w =5 Y |Vl

i=1 i=1 f=1+(m—1)pN
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Large system limit for 6,,, »(p)

Theorem 16. For all m, k, the following limit holds almost surely:

() (B2, + Em k)

lim 0, x(p) = =
N=o0 D i1 W(N)ﬁak
where €, = ((m,---,6m.4)" IS the solution to the linear system

where M is the A x A matrix

B

- |2 bﬁbe] dag 58y )

/=1

and by = (37,,...,6; 4)', and the coefficients {n.,(u)} and {Ar(un)} are

provided by Theorem 15.

[]
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Proof:

e We start with the following auxiliary result:

Let x be a n-dimensional vector with i.i.d. entries with variance % Let A and
C be n x n Hermitian symmetric matrices independent on x. Finally let D be
a n x n diagonal matrix independent on x. Then:

x" DY (Dxx"D"+ A)"'C(Dxx"D" + A)"'Dx —

»(D"A-1CA~'D)
(1+ ¢(DHA-1D))?

where ¢(-) = lim,_. +tr(-) and the convergence is almost surely.

e Using this lemma, we can proceed with the proof as follows:

‘gm,kz<ﬂl)

wr N mpN

% > 2. | Vil 2/1

1=1 ¢=14+(m—1)pN

2

1 H
~tr (8, VO, V)
1 H —141/2 1/2 rgqH —1gqH
At (@ Hp (H) Hy) ™ Ay O0A*(H Hy) ' HY @, )

162



where ®,, is a diagonal matrix with all zeros, but for p N consecutive ones,
corresponding to positions from (m —1)pN + 1 to mpN on the main diagonal,
and where ®, denotes the u/N-dimensional diagonal matrix with all zeros,
but for u N consecutive ones, corresponding to positions from pq.x 1N + 1
to 1., N on the main diagonal.

e The submatrix of ®,,H,, corresponding to the non-zero rows, i.e., including
rows from (m — 1)pN + 1 to mpN, can be written as

[6m,1Hm,1(,u1)7 T 76m,AHm,A(/~LA)] — WmBm

where W,,, is a pN x uN rectangular matrix with i.i.d. entries, with mean 0
and variance 1/N, and

Bm:dlag \ﬁm,ly--'7ﬂm,y---7§m,k7-'-7ﬁm,lga---7§m,A7--°76m,4

TV VO TV

p1N pi N paN
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e Also, we let

C, = A;,{Q@kA;f
= diag | 0,....0. A (), ..., A (), 0.0
e N up N (M—/Z:k)N

and notice that B,,, and C; have both dimension uN x uN.

e Letting the /-th row of W,,, be denoted by w!, , we can write

B
H H
H)H, = > B,W,W,B,
m=1
p— Bme7gW7I;I,L7£Bm + Z Bme,jW?I;Iﬁb’ij

I
n Z B,W''W B,
qgFm
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e In order to be able to apply our lemma, we need that the variance of the
elements of the i.i.d. vector w,, , (playing the role of x in the lemma), is equal
to the inverse of the vector length. Therefore, dividing by u, we define

B
1
A=-> B,WW,B,
!

q=1

and

H
Am,f = A — _Bmwm,fwm’gBm
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e Eventually, collecting all these expressions, we arrive at

1 1 1
Hm,k(p’) = ——1r <—WmBmA_1CkA_1BmW;|1—)

Np \vi Vi

—1
1 1 H (1 H
Np = /1 . p ’

1
1 1

. —Bme’gWH Bm + Am,£> Bme,E—

(u ot VH

. £¢ (BmA_leA_le) (41)

i1+ ¢ (BnA-1B,,))”
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e At this point, our goal is to evaluate the two limit normalized traces.

e We start by the term in the denominator:

¢ (BmA™ ' By,)

. 1 _

1 1 —1
lim —tr| (=HYH B>
N-oo iN <(u H ”> m)

: 1 H Y
W«HMH@ )

A ppN

A 2

=1
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where we used the fact that, by definition,

(i) - Aé”l(m

k

—1
for the diagonal elements of (HZHM) in position p1.,_1N + ¢ for i =

1,...urN, and the convergence result of Theorem 15.

e Also, comparing with the expression of z,, in the proof of Theorem 15 we

have that
Z ,ukﬁ

k=1

e Since Ny, () = 1/(1 + z,,), Where {n,,(p) : m = 1,..., B} are the auxiliary
variables defined in Theorem 15, we have that the denominator is given by

(1+¢ (BnA'B))" = 1,7 (r)
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e Next, we consider the numerator. For this purpose, let ( be a dummy non-
negative real variable and consider the identity:

20 (B2 + 4) 7€) = (B, (CBY, + A) ' Cu(CBE, + A) B,

e By almost-sure continuity of the trace with respect to { > 0, it follows that the
desired expression for the numerator can be calculated as

_ _ . —d -1
6 (BnA~'CLAT'B,) = lim 0 ((cBZ+A)" Cx)
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e In order to compute the asymptotic normalized trace above, we use Theorem
8, that we recall here for convenience:

Let H be N, x N, of the variance profile type. For any a,b € [0, 1] with a < b,

| Lony) » )
N. Z [(SHHH +1) } - / Pgpn(2, s) da
" i=|aNy] ot a

where N./N, — v and where I'yyu(x,s) and Tygr(y,s) are functions
defined implicitly by the fixed-point equation

1
IWI-II—IH (ﬂf, S> o 1 + VSE [U(:Ij, Y), THHH (Y7 S)]
1
THHH (y7 S) T 1 + SE [’U(X, y)) FHHH (X, S)]

for (z,y) € [0,1] x [0,1], where X and Y are i.i.d. uniform-[0,1] RVs and
where the variance profile function is v(x, y).
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e In order to use Theorem 8 in our case, we write

tr ((CB%@ +A)” Ck) — ((CI +B;'AB;Y) ! B;jckB;j)

1 1 !
— Etr ((IJrCBmlABml) BmlckBm1>

e Noticing that, by definition, A = %H,HLHH we can identify the matrix

1 P—11TH /i ,
=B Hy with the matrix H of the Lemma.

e In this case, N, = uN and N. = pBN. Using {B,,} and {W,,} defined
before, we can write the block-matrix form

HZ = [B;W},BoWY, ... . BgW4]

so that

B, 'H;, = [B,'BiW!, B, 'BoW}, ..., B, 'BpWj]
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e |t follows that the variance profile function of #B;}HZ IS given by

2

g [Ml-k—1 Ml-k) [5 —1 5)
Um(x,y) = =—, for (x,y) € —— | X |—, =
(#3) .k (@, 9) p p B B

e Letting 1/¢ = s and using Theorem 8, we find
1 p1:xN » -1 K1k / M

H i=p1._ 1 N+1 1:k—1/ K

where I',,,(x, s) and Y,,,(y, s) are defined by

1+ 225K [ugn (2, Y), Tra(Y, 5)]

14 s v, (X, y), (X, s)]
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e Noticing that v,,(z,y) is piecewise constant, we have that also the functions
[ (x,s) and T,,(y, s) are piecewise constant.

e With some abuse of notation, we denote the values of these functions as
{Tmq(s),g=1,..., A} and {1, ¢(s),f =1,..., B}, respectively, we find that
the fixed point equation can be re-written directly in terms of these values as

1
Lg(s) = e , for g=1,... A
1+23,0 5 524 L, (s)
1
Tm75(8) = for /=1,...,B

pq3s
1+ 7Lm.q(5)

e Finally, using these results and noticing that the non-zero diagonal elements
of B,,'C;B;,! converge to the constant Ax(u) 3%, we arrive at:

6 ((CB2 +8)7 Cn) = EE0 k(1O Mk ()3,
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e It turns out that it is convenient to define the new variables

1

Sm,q(C) = A
m,q

Pm,q(1/<)7 and Gm,ﬁ(C) — Tm,€<1/C)

e Therefore, we can rewrite

1
Sm.q(C) = , forg=1,... A

(B + 23001 57 G t(C)
1
Gme(() = , for /=1,...,B
1+ 150 11482 Sm.g(0)

6 (((BL+A) 1 Cr) = A S0
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e Taking the derivative, we obtain the desired numerator in the form

. —d —1 o ME . —d
%I%d—gqb((ngﬁA) Ck> = A lim =Sk (0)
= EEA () S i (0)

L4

where we define Sy, x(0) = &S, 1(¢)lc=0 and, for later use, G, ((0) =
%Gm,E(C)‘CIO-

e Next, we wish to find a fixed-point equation that yields directly Sm,k(()).
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e By continuity, we can replace directly ( = 0 into the fixed point equations after
taking the derivatives. By doing so, we obtain:

2 p \\B 2
. m + - — /6 Gm)ﬁ O
Sm.q(0) = 4 “ZE L6 (2 >, for g=1,..., A

B
(ﬁ Zﬁzl /Bg,quae(O>)
. L5 2 G (0
Gmye(0) = “12(1:: Halg5m.al0) 5, for ¢=1,...,B
(142520 1482 Sm.a(0))
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e Also, the equations for S,, ,(0) and G,, ((0), obtained by replacing ¢ = 0,
read:

1
Sm.q(0) = , for g=1,...,A

1
Gme(0) = — > , for /=1,....B
1+ 2 _g=1 Mg ¢Sm,q(0)

e Using these equations, we obtain, forall ¢ =1, ..., B,

Gme(0) =

T 2
A 'u’qlﬁg /
L+ 0 §

B
Y Zglzl ﬁ?,,q,Gm’g/(O)
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e By multiplying both sides by pﬁZq and summing over ¢, we find

where we define U,,, , = p Zle ﬁqum,g(O).

e Comparing the fixed point equation with the expression for Ax(p) from
Theorem 15, we discover that U,, , = A,(w), independent of m. Using this
result we obtain

mal0) = AqIL(L.u)

e Using the definition of U, ,, we arrive at

MQ %@,q + /’LUWL,q
A2(p)

Sm,q(o) —

where, with some abuse of notation, we define U, , = p >/, B2 .Gm.e(0).
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e Multiplying both sides by pﬁzq, using the expression of Sm,q(()) and summing
over ¢, we obtain

A :
% Zq’zl Mq/ﬁiq’s’m,q/(())

2
1 A
(1 + o 2 g1 Hy Zq,Sm,q/((D)

B
Umaq — pzﬁg,q
(=1

B 1 2 :A 2 MQBg@,q’+MUm;q/
— /
p 2aq'=1Ha' Py g Az,(p,)

= pY B,

A M 52 2
/=1 q l,q’
(]. _|_ quzl Aq/(l’l’)>
A B N 1
2 2 2 q’ 2 :
= pp Y | > n(m)B; / —( m.g T —Unm, f(u))
3 [t iy (e

e Somehow surprisingly, we notice that the last line is a system of A linear
equations in the A unknown {U,,, : ¢ = 1,..., A}. Therefore, this can be
solved explicitly (although not in closed form in general).
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e In particular, we define the A x A matrix

[Z e (b bﬁbT] @29 ( ) >""’A§fu>>

where b, = (@?’1, . ,@?’A)T, and the vector of unknowns U,,,, then, we the
linear system is given by

[I - pM] Gm = puMby,

e Solving the system we obtain the sought numerator in the form

iy B2, 1+ Unii
—A Sm 0) = ’ .
. k(1) Sm,k(0) = g A ()

180



e Finally, we obtain our final result:

pd (BnATICLAT'B,,)
1 (1+ ¢ (BnA-1B,,))”
p (115 g + Un )

Hm,k(u’) —

T Ag(pe) (1)
() (52,1 + Ui/ 1)
- S ne(p) 82,

where in the last line we used Theorem 15.

o Comparing the expression of Theorem 16 with the above we see that the two
expression coincide by letting &,,, = U.,,/ s
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See it to believe it!

0.7
0.6
[ ]
051 .
i ? : 3
. : ] '
~~ [ ]
=,
X 0.4 .
N [ ]
@ E [ '] [ a 'y Py °
e ] | H . . . .
! L] v b b b
0.3 l—]—:—'—Q—o—o—o
‘ . °
0.2} s t
H
10 10 10 10
N

Finite dimensional samples of 6,,, 1.(p) with N = [4 8 16 32 64 128 256] (dots)
and asymptotic values in the large system limit (lines) form =1,k =1,...,8,
and ¢ =1[0.50.50.75110.75 0.5 0.5].
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System symmetry

e For symmetric systems (same definition as before), choosing the same user
fraction in each symmetric equivalence class of groups, yields

independently of m.

e As a consequence, if all the BSs in the cluster have the equal power
constraint, i.e., P, = ... = Pg = P, then for a symmetric system the per-BS
power constraint coincides with the sum power constraint with P,,,,, = BP.

e This conclusion is analogous to what we have already found for the case of
DPC downlink precoding.
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Weighted sum-rate maximization

e Sum power constraint: using our large-system results, we arrive at:

A B
maximize ) Wiy log (1 +p (Z @2%,;{77m> C]k)

k=1 m=1

A A
subjectto D uar < Pam: Y i < pB.
k=1 k=1

A 7]m62 L

nmzl_z,uk Bm, , m=1,....B
k=1 PZe:ﬂ?Eﬁik

0<n,.<1, m=1,...,B

>0, 0< <1, k=1,...,A
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For per-BS constraint, the power constraint is replaced by

These problems are generally non-convex in q, . and .
For fixed n and u, they are convex in q.
For fixed np and q, we have a linear program with respect to p.

Finally, for fixed i and q the problem is degenerate with respect to ) because
of the equality constraint that corresponds to the fixed-point equation of
Theorem 15.

We proposed a greedy search over the user fractions u that yields near-
optimal results, inspired by the greedy user selection in finite dimension.
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Network utility function maximization

In general, the solution of the weighted sum-rate maximization problem
for the case A > pB (more users than antennas) yields an unbalanced
distribution of instantaneous rates, where some user classes are not served
at all (we have . = 0 for some k).

This is true even in the large system limit, since the ZFBF precoder is limited
by the rank of the channel matrix.

This shows that, for a general strictly concave network utility function U (-),
the ergodic rate region ‘R requires time-sharing even in the asymptotic large-
system case.

Finding the solution of the optimal network utility maximization is therefore
extremely hard.

Nevertheless, this solution can be computed to any level of accuracy by using
a method inspired by the dynamic scheduling policy (stochastic optimization)
approach.
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Virtual queues and weight update

e For each user group £ = 1,..., A, define a virtual queue that evolves

according to

Wit +1) = [Wg(t) — re(t)]+ + ar(t)
where r,(t) denotes the virtual service rate and a(t) the virtual arrival
process.

e The queues are initialized by W, (0) = r,(0) = 0. Then, at each iteration

t = 1,2,..., the virtual arrival processes is given by ax(t) = aj where a* is
the solution of

A
maximize VU(a) — ) Wi(t)as
k=1
subjectto 0 <arp < Apax, VE (42)

and where V, A,... > 0 are some suitably chosen constants, that determine
the convergence properties of the iterative algorithm.
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e The service rates are given by
B
ri(t) = px(t) log (1 +p <Z ﬁ%,mm(t)> Qk:(t)>
m=1

where (u(t),q(t),n(t)) is the solution of the joint power and user fraction
optimization problem for weights W, = Wy(¢).

e Let r(t) denote the vector of service rates generated by the above iterative
algorithm. Then, we can show that

t—o00

lim inf U (1 Zr(7)> > UR) — g

7=0

where R is the optimal ergodic rate point and K is a constant.
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Examples

e We consider a linear cellular arrangement where M base stations are equally
spaced on the segment [— M, M| km, in positions 2m—M—1form=1,..., M
and K user groups are also equally spaced on the same segment, with K/M
user groups uniformly spaced in each cell.

e The distance d,,; between BS m and user group k is defined modulo
|—M, M|, i.e., we assume a wrap-around topology in order to eliminate
boundary effects.

e We use a distance-dependent pathloss model given by afn’k = Go/(1 +
(dm.k/0)")) and the pathloss parameters, Gy,v, and ¢ follow the mobile
WIMAX system evaluation specifications, such that the 3dB break point is
0 = 36m, the pathloss exponent is v = 3.504, the reference pathloss at
dm i = 0 1S Gy = —91.64 dB, and the per-BS transmit power normalized
by the noise power at user terminals is P = 154 dB.

189



Linear cellular layout

Example: linear cellular layout with M = 8 cells

BS 8

BS7
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:B:

| M|

BS 8

BS 7

BS 6

BS 5

BS 4

BS 3

BS 2

BS 1
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8 cell cooperat

:B:

| M|
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Comparison with finite dimensional systems

5 T T T T T T T
— % — Fin—=dim, N=2
451 — B — Fin—-dim, N=4 }
4 — % — Fin—dim, N=8

—6— Asymptotic
3.5

Group rate (bps/Hz)
N
ol

15E%

2 -1.5 -1 -0.5 0 0.5 1 15 2
Group location (km)

User group rate in finite dimension (N = 2, 4, and 8) for cooperation clusters of
size B=1, 2, and 8, with perfect CSIT. M = 8 cells and K = 64 user groups.
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Increasing the number of antennas at each BC

140

120

[ERN
o
o

Cell sum rate (bps/Hz)

N
o

N
o
T

Cell sum rate versus the antenna ratio p for cooperation clusters of size B=1,
2,and 8. M = 8 cells and K = 192 user groups.

(0]
o
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(o))
o
T

Y
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End of Lecture 5



Lecture 6:
Deterministic Approximations



Stieltjes Transform

e One of the mast useful tools in Random Matrix Theory is the Stieltjes
Transform, defined by

mX(z):E[ ! ]:/OO L iFy(z), zeC

X —z o L — 2

e For non-negative X, mx(z) is analytical in C — R.

e Stieltjes transform and moments:

zZ

oo k
mx(z) = _%Z Ep;f ]
k=1
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e Inversion formula:

Fe(z) = Tim = Tm {mx(z + jw))

w—04 77

e Stieltjes transform and n-transform
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A Recent Useful Result

The following result turns out to be very useful to analyze cases of structured
channel matrices beyond the case of variance profile.

For proofs, see [S. Wagner, R. Couillet, M. Debbah and D. T. M. Slock,
“Large System Analysis of Linear Precoding in Correlated MISO Broadcast
Channels under Limited Feedback,” IT Trans. 2012.].

Consider a matrix B = HH" + =, where = € CV*" is Hermitian symmetric
nonnegative definite, and H € C"** is formed by columns

hk = \I/ka

with ¥, ¢ CV*™ and w,, has i.i.d. elements with variance 1/N and 8-th
order moment that decreases as O(1/N*) (e.g., complex Gaussian will do).

Define ®, = ¥, ¥ and Q € CV*" to be deterministic, with bounded
spectral norm.
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e Define the quantity

mp.q(z) = %tr (Q(B — zI)_l)

e Then,forze¢ C—R,,as N — ocowith 3 = K/N, and G = ri/N, we have

mp q(2) — M q(2) % 0

where mg o(2) is the Stieltjes transform of a non-negative RV with compactly
supported distribution, and is given by

—1
) 1 1 ® _
mg q(2) = Ntr (Q (N kz: T eZ(z) +E— zI) )

=1
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with the terms {ex(z)} given by the unique non-negative solution of the
system of coupled fixed point equations

—1
K
O,
=— 21
,ZlJre-(z)jL Z)

j=1 J

1 1
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Sketch of Proof

e The goal is to find a convergent deterministic approximation (usually referred
to as “deterministic equivalent”) to the sequence of random variables
mp.q(z), for N — oo.

e To this purpose, let D denote a sequence of deterministic matrices and
assume

1 1 a.s.
i (Q(B - )7 — NtrD_l %0

o We use the “resolvent formula”: U~! -V~ = - U"}U - V)V~ and write

QB-:)7'-D7' = D (D-(B-:D)Q ) QB 2D
= D'(D-HH"+E2-.0)Q")Q(B - 21!
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e We postulate D = (R+Z—21)Q !, where R is a deterministic approximation
(in some sense) of the random matrix HH" to be specified later. Replacing,
we have

QB -2 '-D'=D'RB-:1)"' —-D 'HH"(B — 2I)!

e Recalling that HH" = 3" @, w,w!¥,, we have

1 _ _
(D 'HH"(B —2I)7') =

=| -

K
tr (Dl > Wpwwy (B - z1)1>

k=1

whw, (B — 21)7'D 1w, w,

I
=] -
E

i
—
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e Next, we write B = By, + \I!kwkw,';'\I!,';' and apply the matrix inversion lemma,
to obtain
K H —17y—1

1
_tr(D'HH"(B — 1) 1) = —
N ( ( N ) ) N 1+ WE\Pk(Bk — ZI)_l\Ikak

k=1

e Term should become similar to the second term

%tr (D'R(B -21) ")

e Furthermore, for the trace lemma, notice that

a.s. 1 1

where the last approximate equality can be made asymptotically rigorous
(finite rank perturbation).
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e Our of good intuition, we choose

1 O,
R=—
N ; 1+ +tr(©@,(B — 2I)~1)

and let e (z) = +tr (@, (B — 2I)7!) = ~tr (O,(R+ E — 2I)71).

e Therefore, if this is true, the functions e (z) must satisfy

N N <

K
1 1 QOF
— —tr| ® E J = — 21
er(2) k — 1+ e;(2) + 2z

e The rest of the proof is dedicated to developing rigorous bounds to show that
this convergence actually occurs, and that the system of coupled equations
defining {ex(z)} converges to a unique solution compatible with the property
of Stieltjes transforms.
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Sanity check

e Suppose 2 =0,Q =1, ¥, = /T,I. Then B = STS", in the form we have
already seen several times.

e Given the relation between Stieltjes transform and n-transform, we expect
that

1 1
;mB (‘; = Nersh(Y) =1
solution of (from the key equation of Theorem 4)
1

n:1+mﬂz[ T }

1+ynT

e We wish to recover this result from the general deterministic equivalent case.
The iteration for {ex(z)} becomes

Tk

I ) B
sz:11—|—ej(z) “

ex(z) =
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e Dividing by T}, we find

er(z) 1

T, B K i
& K ijl 1—|—e§(z) <

e We conclude that ex(z) /T does not depend on k. We call this quantity u(z).
Therefore:
() = 1
é%Ejj:11+TﬁAz)__Z

e Equivalently

p(=1/7) /v = % 1 T

1
14‘W¢h€§:j:11+vrﬂd—1ﬁﬂ/v
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e ldentifying terms, we have u(—1/~)/~v = n(v), such that we recover the fixed
point equation

1
n = .
1 K T
L+ 6% 2 e tr,
e Finally, we notice that in this special case we have

1

ﬁ K Tk; L
K Zk:l 1+er(2) <

mp(z) =

e Replacing z = —1/~, ex(—=1/v) = Tiu(—1/v) = ~vTxn(7y), and multiplying
both sides by 1/~, we find that mg(—1/~)/v = n(y) since it satisfies the
same equation.
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Application: massive MIMO with antenna correlations

In FDD systems, “massive MIMQO” is impractical since the downlink training
and the CSIT feedback consume too many dimensions.

ldea: we can exploit the channel correlation in order to achieve a channel
dimensionality reduction, while retaining the benefits of massive MIMO.

Isotropic scattering, ju — u’| = AD:

E [h(u)h*(u')] ! / e I2mDcos(a) gy = Jo(2n D)

" or

— 7T

Two users separated by a few meters (say 10 \) are practically uncorrelated.

207



e In contrast, the base station sees user groups at different AoAs under narrow

AS A = arctan(r/s).
N
scattering ring

.J region containing the BS antennas

e This leads to the Tx antenna correlation model
h=UAY?w, R =UAU"

with

1 AT
R],,, = —/ sk (at0)(um=up) 71,
YA BN

m,p
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Joint Space Division and Multiplexing (JSDM)

K users selected to form G groups, with ~ same channel correlation.
H = [H;,...,Hg|, with H; = UA*W,.

Two-stage precoding: V = BP.

B € C"*" is a pre-beamforming matrix function of {U,, A,} only.

P € C"* is a precoding matrix that depends on the effective channel.

The effective channel matrix is given by

‘BYH, BYH, --- B{HS
o _ |BYH, BYH .- BYHg

BYH, BYH, --- BIHg
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Per-Group Processing: If estimation and feedback of the whole H is still too
costly, then each group estimates its own diagonal block H, = BEHQ, and

P — diag(P,, - , Pe).
This results in

Yg = HEBngdg + Z HSBQ’Pg’dg/ +z,

g'#g
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Achieving capacity with reduced CSIT

o Letr = Zle r, and suppose that the channel covariances of the G groups

are such that U = [Uy,--- ,Ug| is M x r tall unitary (i.e., r < M and U'U =
L.).

o Eigen-beamforming (let b, = r, and B, = U,) achieves exact block
diagonalization.

e The decoupled MU-MIMO channel takes on the form
Yg = HgHPgdg +2z, = WEA;/QPgdg + 2z, for g=1,...,G,

where W is a r, x K i.i.d. matrix with elements ~ CA (0, 1).

Theorem 17. For U tall unitary, JSSDM with PGP achieves the same sum
capacity of the corresponding MU-MIMO downlink channel with full CSIT. |
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Block Diagonalization

For given target numbers of streams per group {S,} and dimensions {b,}
satisfying S, < b, < r,, we can find the pre-beamforming matrices B, such

that:
U'B,=0 V ¢ #g, and rank(U)B,) > S,

Necessary condition for exact BD

Span(B,) C Span~({U, : ¢’ # g}).

When Span~({U, : ¢ # g}) has dimension smaller than S,, the rank
condition on the diagonal blocks cannot be satisfied.

In this case, S, should be reduced (reduce the number of served users per
group) or, as an alternative, approximated BD based on selecting r; < r,
dominant eigenmodes for each group ¢ can be implemented.
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Performance analysis with regularized ZF

e The transformed channel matrix H has dimension b x .S, with blocks H, of
dimension b, x S,,.

e For simplicity we allocate to all users the same fraction of the total transmit

P
power, pgk: p— g-

e For PGP, the regularized zero forcing (RZF) precoding matrix for group g is
given by o
Pyt = (GKgHg,

where .
K, = [HH; + byl |
and where
s S/
0 tr(H'K"BHB, K H,)
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The SINR of user g, given by

o G B,K, B,
gi,pgp ~ P ~ > P - >
5 2 Gy, BgKgBhg 2+ 5500 > Cﬁ”hngg’Kg’Bg’hgé' F+1

Using the “deterministic equivalent” method we can calculate ~; .., such
that

o M — o0 0
Varpep — Vgp,pgp

First, we consider the terms appearing in the numerator and denominator in
Yoi.pzp aNd express them as Stieltjes transforms of the form Ztr(Q(B—2I)~1)
evaluated as some appropriate value of z € R_.

Then, we repeatedly use the deterministic equivalent result.

Finally, we pull all these terms together and express them as a single system
of fixed-point equations.
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e For the sake of completeness, we include the final result (after many pages
of calculation): letting

R, = B]R,B,

denote the covariance matrix of users in group g, we have

. EE(ms)?
gkapgp7er CQTO (]_ —l— ngig CS/T‘Z’Q/)(]‘ —l_ mg)2’

(43)

where Eg P/G and the quantities m; , Yo Tg,g, and 1_“; are given by

’
g 9,9
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g
1P n
b G (1+m9)?

lP Ny g

-0 \2
b'G(1+m3))

(44)

(45)

(46)

(47)

(48)
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Ltr (R,T,BIB,T,)

| SHr(RyTyR,yT)
Y (1+mY)?
étr (RQTQRQTQ)
| S (RyTyRyTy)
Y (1+mY)?

wtr (RyTyBYR B, Ty )

Strld ™ B
L Vtr(Rg’Tg’Rg’Tg’)
b (1+m?,)?

(49)

(50)

(51)
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Example

e M =100, G = 6 user groups, Rank(R,) = 21, effective rank ry = 11.
e We serve S’ = 5 users per group with ¥’ = 10, r* = 6 and r* = 12.

e For r; = 12: 130 bit/s/Hz at snr = 18 dB: 5 bit/s/Hz per user, for 30 users
served simultaneously on the same time-frequency slot.

350 : ‘ ‘ : : 350 —
Capacity Capacity
—O— ZFBF, JGP —O— ZFBF, JGP
—O— RZFBF, JGP —O— RZFBF, JGP
—O— ZFBF, PGP L | | —3— zFBF, PGP
300 o RZFBF, PGP - 300 —o— RZFBF, PGP

OO 5 10 15 20 25 30 OO é 1‘0 1‘5 éO éS 3C
SNR (in dBs) SNR (in dBs)
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Training, Feedback and Computations Requirements

Full CSI: 100 x 30 channel matrix = 3000 complex channel coefficients per
coherence block (CSI feedback), with 100 x 100 unitary “common” pilot matrix
for downlink channel estimation.

JSDM with PGP: 6 x 10 x 5 diagonal blocks = 300 complex channel
coefficients per coherence block (CSl feedback), with 10 x 10 unitary
“dedicated” pilot matrices for downlink channel estimation, sent in parallel
to each group through the pre-beamforming matrix.

One order of magnitude saving in both downlink training and CSI feedback.

Computation: 6 matrix inversions of dimension 5 x 5, with respect to one
matrix inversion of dimension 30 x 30.
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Discussion: is the tall unitary realistic?

e For a Uniform Linear Array (ULA), R is Toepliiz, with elements

1 ra .
R] = ﬂ/ e~ 2mD(m=p)sin(a+0) g0, 1 p e {0,1,...,M —1}
A

m,p

e We are interested in calculating the asymptotic rank, eigenvalue CDF and
structure of the eigenvectors, for M large, for given geometry parameters
D.,0,A.

e Correlation function

A
ro = / 6—]277Dm Sln(a—}—e)doé.
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e As M — oo, the eigenvalues of R tend to the “power spectral density” (i.e.,
the DT Fourier transform of r,,),

sampledat{ =k/M,fork=0,..., M — 1.

e After some algebra, we arrive at

1 1
S(f)—ﬂ Z \/DQ—(m—S)?

me[D sin(—A+0)+&,D sin(A+0)+£]
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Szego’s Theorem: eigenvalues

Theorem 18. The empirical spectral distribution of the eigenvalues of R,

1 M

Fe'(0) = 37 2 HAm(R) < A},

m=1

converges weakly to the limiting spectral distribution

M — o0

lim FYV () = F(A) = / de.
S(6)<A
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Example: M =400,0 =7 /6,D =1, A = n/10. Exact empirical eigenvalue cdf
of R (red), its approximation the circulant matrix C (dashed blue) and its
approximation from the samples of S(£) (dashed green).

0.9H
0.8f
0.7r

0.6f

CDF

0.4

0.3

0.2

0.1F

T
Toeplitz
= = = Circulant, M finite
Circulant, M «

0.5

0.5

1 1.5
Eigen Values

2.5
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A less well-known Szego’s Theorem: eigenvectors

Theorem 19. Let )\Q(R) < ..., < AM—I(R) and )\0(0) < ..., < >\M—1(C)
denote the set of ordered eigenvalues of R and C, and let U = |uy,...,up 1]
and F = [fy, ..., f\_1] denote the corresponding eigenvectors. For any interval
la,b] C |k1, k| Such that F'(\) is continuous on |a, b, consider the eigenvalues
index sets L, = {m : AMp(R) € [a,b]} and Jiap) = {m : \n(C) € [a,b]},
and define Uy, ) = (um : m € Ijgp) and Fi, ) = (£, : m € Jjqp) be the
submatrices of U and ¥ formed by the columns whose indices belong to the
sets 1,5 and Ji, ), respectively. Then, the eigenvectors of C approximate the
eigenvectors of R in the sense that

Consequence 1: U, is well approximated by a “slice” of the DFT matrix.

Consequence 2: DFT pre-beamforming is near optimal for large M.
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Theorem 20. The asymptotic normalized rank of the channel covariance
matrix R, with antenna separation A\D, AoA 6 and AS A, is given by

p=min{l, B(D,0,A)},

with B(D,0,A) = |Dsin(—A + 0) — Dsin(A + 6)]. H

Theorem 21. Groups g and g’ with angle of arrival 6, and 6, and common
angular spread A have spectra with disjoint support if their AoA intervals |0, —
A,0,+ Al and [0, — A,0, + Al are disjoint. H
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DFT Pre-Beamforming

8 T 1500

——6=-45 RZFBF, Full
—0=0 ZFBF, Full
7t —0=45 i - ® = RZFBF, DFT
—w— ZFBF, DFT
6 |
1000+

w O
S 2
e ©
>4 o
c h—/’ £
[ =
(=) w
1]

3 [

500+

2 |

1 |

0 . O L 1 L L 1

-0.5 0 0.5 0 5 10 15 20 25 30

3 SNR

o ULA with M =400, G = 3,0, = =%,6, = 0,63 = %, D = 1/2 and A = 15 deg.
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Super-Massive MIMO
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ldea: produce a 3D pre-beamforming by Kronecker product of a “vertical”
beamforming, separating the sector into L concentric regions, and a
“horizontal” beamforming, separating each ¢-th region into G, groups.

Horizontal beam forming is as before.

For vertical beam forming we just need to find one dominating eigenmode
per region, and use the BD approach.

A set of simultaneously served groups forms a “pattern”.
Patterns need not cover the whole sector.

Different intertwined patterns can be multiplexed in the time-frequency
domain in order to guarantee a fair coverage.
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An example

e Cell radius 600m, group ring radius 30m, array height 50m, M = 200
columns, N = 300 rows.

e Pathloss g(z) = Tli)& with § = 3.8 and dy = 30m.
dg

e Same color regions are served simultaneously. Each ring is given equal
power.

1000

T
—O— BD, RZFBF
—O0—BD, ZFBF

- O - DFT, RZFBF
- O-DFT, ZFBF

900

800

7001

600

Sum rate of annular regions

5001

400

Annular Region Index |
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Sum throughput (bit/s/Hz) under PFS and Max-min Fairness

Scheme Approximate BD | DFT based
PFS, RZFBF 1304.4611 1067.9604
PFS, ZFBF 1298.7944 1064.2678

MAXMIN, RZFBF 1273.7203 1042.1833
MAXMIN, ZFBF 1267.2368 1037.2915

1000 bit/s/Hz x 40 MHz of bandwidth = 40 Gb/s per sector.
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End of Lecture 6
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The End (Thank You)



