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Lecture 1:
Models, Performance

Measures and Regimes of
Interest
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The Finite-Dimensional Linear-Gaussian Channel

• Many (almost all?) important scenarios in wireless communication networks
yield a PHY layer model in the form

y = Hx + z (1)

where y, z ∈ Cn, x ∈ Cm and H ∈ Cn×m, and z ∈ CN (0,Σz).

• (1) is a finite-dimensional Linear-Gaussian channel.

• Different special cases depend on the constraints at the input and output.

• Input constraints: they limit the empirical input distributions that the
encoder(s) are allowed to generate.

• Output constraints: they limit the type of processing allowed at the
decoder(s).
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• Sequence of channel uses over signal-space dimensions: often we think of
(1) as one channel use of the channel

y[t] = H[t]x[t] + z[t], t = 1, . . . , T

• Transmission of a block of T channel uses.

• The index t ∈ {1, . . . , T} denote the dimension over which coding is
performed (this may be time, frequency, time-frequency ...).

• H[t] may change at every t, stay constant for all t ∈ {1, . . . , T} or change in
blocks of some duration L|T .
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Example 1: Direct-Sequence CDMA

• Each user is given a spreading code (or signature sequence) sk =
(s1,k, . . . , sN,k)T ∈ CN .

• A chip-synchronous and symbol-synchronous model, sampled at the chip
rate, is given by

y[tN + i− 1] =
K∑
k=1

si,k xk[t] + z[tN + i− 1], i = 1, . . . , N

• xk[tN ] is the information symbol of user k at symbol time t.

• Stacking N consecutive chips into N -dimensional vectors, we obtain

y[t] = Sx[t] + z[t]
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• Chip normalization: si,k = 1√
N
Si,k with |Si,k| = 1.

• Input power constraint (uplink): E[|xk[t]|2] ≤ Pk.

• Input power constraint (downlink):
∑K
k=1 E[|xk[t]|2] ≤ P .
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• Simple generalization: “long spreading codes” (as in 3G WCDMA and CDMA
2000)

y[t] = S[t]x[t] + z[t]
The spreading code of each user changes from symbol to symbol.

• Simple generalization: frequency-flat fading (formally equivalent to
shadowing or distance-dependent pathloss):

y[t] = S[t]A[t]x[t] + z[t]

where A[t] = diag (A1[t], . . . , AK[t]).

• Connection to our reference model: H[t] = S[t]A[t], Σz = N0I, n = N ,
m = K.
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Example 2: Direct-Sequence CDMA with Multipath

• Multipath fading in CDMA is modeled by a “short” channel impulse response
with respect to the symbol duration. (We can neglect ISI).

• Effective spreading code is the convolution of sk with the channel impulse
response ck

=

C

sL� 1

N
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• Uplink: each user is affected by its own frequency-flat pathloss/shadowing
and multipath fading channel:

H = [C1s1, . . . ,CKsK] A

• Downlink: the signal broadcasted by the base station is received at any given
user k through its own pathloss/shadowing and multi path fading channel:

H = CS

• In both cases, we have the model

y = Hx + z

(make it time-varying as required).
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Example 3: Multi-Carrier CDMA

• Introducing OFDM: the Inter-Symbol-Interference (ISI) channel in general:

y[i] =
L−1∑
`=0

c[`]x[i− `] + z[i]

• LTI system, with finite-length impulse response c = (c[0], . . . , c[L− 1]).

• We use Cyclic Prefix (CP) precoding, i.e., fix block length N and send
sequences of blocks {x[t]} with the CP precoding defined by

(x[tN ], . . . , x[tN +N − L+ 1], . . . , x[tN +N − 1]︸ ︷︷ ︸
block

)

↓
(x[tN +N − L+ 1], . . . , x[tN +N − 1]︸ ︷︷ ︸

cyclic prefix

, x[tN ], . . . . . . , x[tN +N − 1]︸ ︷︷ ︸
block

)
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• The vectorized channel model becomes

y[t] = Cx[t] + z[t]

where y[t], z[t],x[t] ∈ CN , and C is a circulant matrix with first column
[

c
0

]
.

=

C

N

x[t]y[t]
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• Result: Any N ×N circulant matrix C can be written as

C = FH diag(G0, . . . , GN−1) F

where F is the unitary DFT matrix with elements

Fk,` =
e−j

2π
N k`√
N

, k = 0, . . . , N − 1, ` = 0, . . . , N − 1

and where 
G0

G1
...

GN−1

 =
√
NF



c[0]
c[1]

...
c[L− 1]

0
...
0


is the vector of DFT coefficients of the impulse response, i.e.,

Gk =
L−1∑
`=0

c[`]e−j
2π
N k`
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• IDFT precoding at the transmitter:

x[t] = FH x̌[t]

• DFT unitary transformation at the receiver:

y̌[t] = F y[t]

• The resulting frequency-domain OFDM channel is given by

y̌[t] = diag(G0, . . . , GN−1)x̌[t] + ž[t]

where the frequency-domain noise is ž[t] = Fz[t] (if z[t] ∼ CN (0, N0I) then
also ž[t] ∼ CN (0, N0I)).
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• In multi-carrier CDMA, the block of frequency domain symbols are obtained
by

xk[t] = skxk[t]
where sk ∈ CN is the frequency-domain spreading code.

• Uplink: the resulting channel model is again given by (1) with

H = (G� S) A

where � is element-wise product,

G =

 G0,1 · · · G0,K
... ...

GN−1,1 · · · GN−1,K

 , S =

 s0,1 · · · s0,K
... ...

sN−1,1 · · · sN−1,K


and A = diag(A1, . . . , AK) represents the frequency-flat pathloss/shadowing.

• Downlink: the resulting channel model is again given by (1) with

H = diag(G0, . . . , GN−1)S
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Example 4: Frequency-Flat MIMO Point-to-Point

• One channel use of the MIMO point-to-point channel is given by (1) with
H ∈ CN×M and input constraint tr(E[xxH]) ≤ P .

• Elements Hi,j of H represent the channel coefficients from Tx antenna j to
Rx antenna i.
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Example 5: MIMO-OFDM Point-to-Point

• Multipath MIMO channel: time-domain

y[t] =
L−1∑
`=0

H` x[t− `] + z[t]

• Using the same OFDM idea explained before, this can be reduced to the set
of parallel channels in the frequency domain

y̌[f, t] = Ȟ[f ]x̌[f, t] + ž[f, t]

where ν ∈ {0, . . . , F − 1} is the subcarrier index and

Ȟ[f ] =
L−1∑
`=0

H`e
−j2π

F f`

is the DFT of the matrix channel impulse response.

16



Example 6: MIMO Multiple Access Channel (MIMO-Uplink)

• For the sake of notation simplicity, we shall neglect the time-frequency cannel
use index unless necessary.

• The channel is still represented by (1) with the constraint that x is generated
by a product distribution, i.e., x ∼ ∏K

k=1PXk (in particular, the input
covariance E[xxH] is diagonal).
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Example 7: MIMO Broadcast Channel (MIMO-Downlink)

• In this case it is convenient to use the channel model with y = HHx + z, and
the constraint of decentralized processing at the receivers.

• Collection of channels yk = hH
kx + zk.
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Example 8: Multi-Cell Models
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Discretization of the Users Distribution

BS 1

user
group 2

user
group 4

user
group 1

. . . . .

BS 2

. . . . .
. . . . .

cell 1 cell 2

user
group 8

user
group 5

user
group 6

. . . . .

... ...

• We assume that the users are partitioned in co-located groups with N single-
antenna terminals each.

• We have A user groups per cluster, and clusters of B cells.

• We have M = γN base station antennas per cell.
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Cluster of Cooperating Base Stations

• Modified path coefficients βm,k = αm,k
σk

taking into account the ICI power.

• Channel matrix (B ×A blocks of size γN ×N ):

H =

 β1,1H1,1 · · · β1,AH1,A
... . . . ...

βB,1HB,1 · · · βB,AHB,A

 .

• Reference cluster channel model

y = HHx + z

where y = CAN , x = CγBN , and z ∼ CN (0, I).
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Performance measures: K users system

• Assume T large enough such that reliable communication is meaningful.

• Assume for simplicity a single channel matrix state spans T channel uses:
i.e., H is constant for all t ∈ {1, . . . , T}.

• For given H, the Instantaneous achievable rate region is R(H) ⊂ RK
+ .

• This means that for any ε > 0 and rate K-tuple R(H) = (R1(H), . . . , RK(H))
such that R + ε1 ∈ R(H) there exists a family of coding schemes for
increasing T such that

lim inf
T→∞

1
T

log |Mk| ≥ Rk ∀ k, lim
T→∞

P
(

K⋃
k=1

{
Ŵk 6= Wk

})
= 0
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• Now we consider a long sequence of blocks of (large) length T , and we are
interested in the long-term throughput region of the network, i.e., the region
of long-term average rates

Rk = lim
τ→∞

1
τ

τ∑
t=1

Rk(H[t]) = E[Rk(H)]

• While R(H) may not be convex, the long-term throughput region R is always
convex, since time-sharing is always possible.

• We are interested in points R on the boundary of R.

• In particular, we are interested in maximizing some desired concave and
componentwise non-decreasing network utility function U(R), that reflects
some desired notion of fairness.
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• Network Utility Maximization (NUM):

maximize U(R)

subject to R ∈ R (2)

• The problem is always convex.

• Difficulty: R is typically very hard to express in closed form (curved,
uncountable number of supporting hyperplanes).

R1

R2

R
R

?
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Scheduling and resource allocation

• We have an instantaneous coding strategy achieving points R(H) ∈ R(H)
for any channel state H.

• Over the sequence of successive blocks, we wish to schedule the users and
allocate the network resources such that, in the long-term average sense, we
achieve the point R

? ∈ R, solution of (2).

• A general method: Drift Plus Penalty (DPP).

• Let Rk[t] = Rk(H[t]) denote the instantaneous achievable rates and define
the transmission queues

Qk[t+ 1] = [Qk[t]−Rk[t]]+ +Ak[t]

for a set of arrival processes {Ak[t]}.
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• System stability region: convex closure of all arrival rates λ, with λk =
E[Ak[t]], such that there exists a transmission policy such that all queues
are strongly stable: lim supτ→∞

1
τ

∑τ
t=1 E[Qk[t]] <∞ for all k.

Theorem 1. (Stability Policy) Suppose that the arrival process A[t] is i.i.d. over
the slots, with elements uniformly bounded in [0, Amax], and that the channel
state H[t] also forms an i.i.d. sequence over the slots. Then, the system stability
region coincides with R. Furthermore, any λ in the interior of R is stabilized by
the max-weight dynamic policy, solution of:

maximize
K∑
k=1

QK[t]Rk[t]

subject to (R1[t], . . . , RK[t]) ∈ R(H[t]) (3)

�

For a proof, see for example [L. Georgiadis, M. J. Neely and L. Tassiulas,
“Resource allocation and cross-layer control in wireless networks,” Foundations
and Trends in Networking, NOW Pub., 2006].
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Theorem 2. (Utility Maximization) Consider a virtual arrival process defined as
follows: A[t] = a∗ with

a∗ = arg max
a∈[0,Amax]K

{
V U(a)−

K∑
k=1

akQk[t]

}

for some 0 < Amax < ∞ and V > 0. Then, by applying the stability policy
of Theorem 1 to such virtual queues, the resulting long-term averaged network
utility satisfies

lim inf
τ→∞ U

(
1
τ

τ∑
t=1

E[R[t]]

)
≥ U(R

?
)− κ

V

for some system-dependent constant κ and for sufficiently large Amax. In
addition, all virtual queues are strongly stable, with

lim sup
τ→∞

1
τ

τ∑
t=1

E[Qk[t]] = O(V ), ∀ k

�

For a proof, see for example [Georgiadis, Neely, Tassiulas, FnT 2006].
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A Simple Example

• Orthogonal multiple access channel with individual link capacities C1, C2.
The instantaneous rate region is the non-convex discrete set of points

R = {(C1, 0), (0, C2)}

• In this case R is the set of all non-negative (R1, R2) such that

R1

C1
+
R2

C2
≤ 1

• We wish to maximize the Proportional Fairness network utility function

U(R1, R2) =
2∑
k=1

logRk
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• In this case, we obtain an explicit closed-form solution:

L(R1, R2, µ) =
2∑
k=1

logRk − µ
(
R1

C1
+
R2

C2
− 1
)

• Differentiating and applying the KKT conditions, we obtain

∂L
∂Rk

=
1
Rk
− µ

Ck
≤ 0

yielding

Rk ≥ Ck
µ

Since Rk = 0 yields an objective function value equal to −∞, the solution
must be strictly positive. Hence

Rk =
Ck
µ
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Replacing in the constraint, we obtain µ = 2, such that

Rk =
Ck
2

• This corresponds to serving each user for a fraction 1/2 of the slots (each
user is given equal transmission resource).

• Simulation: C1 = 1, C2 = 4, V = 10, Amax = 5. Time-averaged throughput
versus slots:
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Regime of Interest: Large Systems

• We are interested in the regime of n,m→∞, with fixed ratio m
n = β.

• Normalizations: the elements of H have mean 0, variance O(1
n) and higher

order moments that vanish sufficiently fast.

• In DS-CDMA systems,

si,k =
1√
N
Si,k, with E[|Si,k|2] = 1

• In downlink or single-user MIMO systems, with total input power constraint
P , we have

y = HHx + z, tr
(
E[xxH]

)
= P
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• We can divide and multiply by M (number of Tx antennas) and have

y =
1√
M

HHx + z,
1
M

tr
(
E[xxH]

)
= P

• In uplink MIMO systems, it is reasonable to assume that the total transmit
power is constant, such that

y =
1√
M

Hx + z,
β

K
tr
(
E[xxH]

)
= P

where β = K/M .

• General idea: under relatively mild and general conditions, in a large number
of relevant settings, the instantaneous rates Rk(H) become deterministic
constants that depend on the system “geometry”, but are independent of
the specific realization of H.

• As a consequence: all NUM scheduling problems become as easy as the
simple example of before!
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End of Lecture 1
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Lecture 2:

Basic Results with I.I.D.
Matrices
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DS-CDMA with i.i.d. Spreading Codes

• Recall the model

y = Sx + z =
K∑
k=1

skxk + z, (4)

• S ∈ CN×K, with i.i.d. elements, si,k = 1√
N
Si,k, with E[|Si,k|2] = 1 and finite

higher order moments (for brevity, we will say “well-behaved”).

• z ∼ CN (0, N0I).

• Uplink symmetric case: E[|xk|2] ≤ P , where P denotes the energy per
symbol (power) for each user.

• We define the SNR per user as

snr =
P

N0
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Vector Gaussian MAC capacity region

Theorem 3. The capacity region of the vector Gaussian MAC (4) is given by
the set of inequalities

∑
k∈K

Rk ≤ max
P (x)∈P

1
N
I(x(K); y|x(Kc),S)

for all subsets K ⊆ {1, . . . ,K}, where x(K) denotes the collection of input
variables {xk : k ∈ K} and where P denotes the set of product input distributions
satisfying the input power constraint. �

For a proof, see for example [T. Cover and J. Thomas, Elements of information
theory, 2nd Ed., Wiley 2012].
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• It is not difficult to show that, for any subset K, the corresponding mutual
information term is maximized by letting x ∼ CN (0, P I), such that

I(x(K); y|x(Kc),S) = E
[
log
∣∣I + snrS(K)SH(K)

∣∣]

where S(K) is the submatrix of S comprising the columns {sk : k ∈ K}.

• The biting constraint for the sum rate is given by

Rsum ≤ 1
N

E
[
log
∣∣I + snrSSH

∣∣]
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• We have

1
N

E
[
log
∣∣I + snrSSH

∣∣] =
1
N

E
[
N∑
i=1

log
(
1 + snrλi(SSH)

)]

= E
[

1
N

N∑
i=1

log
(
1 + snrλi(SSH)

)]
= E

[
log
(
1 + snrλ(SSH)

)]
= E

[∫ ∞
0

log(1 + snrλ)dF (N)

SSH (λ)
]

where λ(M) denotes an eigenvalue of a matrix M, and F
(N)
M (λ) is the

Empirical Spectral Distribution (ESD) of the unordered eigenvalues of an
N ×N matrix M, defined by the “ladder” function

F
(N)

SSH (λ) =
1
N

N∑
i=1

1{λi(SSH) ≤ λ}
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• In general, for random S and finite N we have that F (N)

SSH (λ) is a collection of
random variables, for all λ ∈ R.

• Going to the limit: by letting N → ∞ with K/N = β, under rather mild
conditions (always verified in the cases treated here), we have that

F
(N)

SSH (λ) =⇒ FSSH(λ)

where FM(λ) is the Limit Spectral Distribution (LSD) of the sequence of
random matrices SSH, for increasing N .

• Technically speaking, this convergence is weak convergence almost
everywhere, that is, for each point of continuity λ we have convergence
almost surely (with respect to the probability space of the random matrices).

• Under such convergence conditions, the large-system limit of the symmetric
sum rate is given by

Rsum =
∫ ∞

0

log(1 + snrλ)dFSSH(λ)
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One Step Back: Transforms

• The explicit characterization of the LSD of a sequence of random matrices is
typically difficult (only a few famous results are known).

• In contrast, we shall follow an implicit characterization, through some
appropriate integral transform of the LSD.

• Without trying to be fully exhaustive, we start by introducing here two
fundamental transform which have a communication theoretic significance.

Definition 1. (η-Transform) Let X denote a non-negative RV. The η transform
of X is defined by

ηX(γ) = E
[

1
1 + γX

]
=
∫ ∞

0

1
1 + γx

dFX(x)

for γ ∈ R+.

We will use the notation ηM(γ) to indicate the η-transform of λ(M) ∼ FM(λ), the
LSD of some sequence of random matrices M. ♦
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Definition 2. (Shannon-Transform) Let X denote a non-negative RV. The
Shannon-transform of X is defined by

VX(γ) = E [log(1 + γX)] =
∫ ∞

0

log(1 + γx)dFX(x)

for γ ∈ R+.

We will use the notation VM(γ) to indicate the Shannon-transform of λ(M) ∼
FM(λ), the LSD of some sequence of random matrices M. ♦

• Going back to our DS-CDMA uplink channel, we have

Rsum = VSSH(snr)
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Elementary Properties of η and Shannon Transforms

• ηX(γ) is strictly monotonically decreasing for γ ∈ R+, with ηX(0) = 1 and
limγ→∞ ηX(γ) = P(X = 0).

• γηX(γ) is strictly monotonically increasing for γ ∈ R+ from 0 to E[1/X].

• Asymptotic normalized rank of M (fraction of non-zero eigenvalues) is ρ =
1− limγ→∞ ηM(γ), and

lim
N→∞

1
N

tr
(
M−1

)
= lim
γ→∞ γηM(γ)
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• For any A of dimensionN×K and B of dimensionK×N , such that M = AB
is non-negative definite,

N (1− ηAB(γ)) = K (1− ηBA(γ))

such that, in the limit of N →∞ and K/N = β, we have

ηAB(γ) = 1− β + βηBA(γ)

• Relation between η and Shannon transform:

γ
d

dγ
VX(γ) = 1− ηX(γ)
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• Trace Lemma: For a sequence of N × N matrices with uniformly bounded
spectral norm, and a sequence of random vectors s with i.i.d. components
with mean 0 and variance 1/N , independent of M,

sHMs− 1
N

tr(M) a.s.−→ 0

• As a consequence,
sH (I + γM)−1 s a.s.−→ ηM(γ)
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Sum-Capacity of the Symmetric DS-CDMA Uplink

Theorem 4. Let S be N ×K with i.i.d. elements of the type si,k = 1√
N
Si,k, with

well-behaved Si,k. Let T denote a diagonal non-negative definite matrix with
well-defined LSD FT(λ), as K →∞. Then, as N →∞ with K/N = β, the LSD
of STSH exists and has η-transform ηSTSH(γ) = η, solution of the equation

β =
1− η

1− ηT(γη)
(5)

The corresponding Shannon transform is given by

VSTSH(γ) = βVT(γη) + log
1
η

+ η − 1 (6)

�
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Sketch of Proof:

• We give an instructive proof with profound communication theoretic
significance.

• Consider a receiver that wishes to detect user k (here we assume E[|xk|2] = 1
for all k):

y = sk
√
Tkxk +

∑
j 6=k

sj
√
Tjxj + z

• The optimal linear receiver maximizes the Signal-to-Interference plus Noise
(SINR) at its output, and is given by by linear MMSE receiver:

x̃k = E[xkyH]
(
E[yyH]

)−1
y

• Explicitly, we have
E[xkyH] =

√
TksH

k

46



and
E[yyH] = TksksH

k +
∑
j 6=k

TjsjsH
j +N0I︸ ︷︷ ︸

Σk

• The resulting MMSE is given by

MMSEk = E[|xk|2]− E[xkyH]
(
E[yyH]

)−1 (E[xkyH]
)H

= 1− TksH
k

(
TksksH

k + Σk

)−1
sk

= 1− TksH
k

(
Σ−1
k −

TkΣ−1
k sksH

kΣ
−1
k

1 + TksH
kΣ
−1
k sk

)
sk

=
1

1 + Tkµk

with µk = sH
kΣ
−1
k sk.
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• From the well-known relation between MMSE and SINR, we have

sinrk =
E[|xk|2]−MMSEk

MMSEk
=
(

1− 1
1 + Tkµk

)
(1 + Tkµk) = Tkµk

• Now, letting λi denote the i-th eigenvalue of STSH, we can write:

N∑
i=1

λi
λi +N0

= tr
((
N0I + STSH

)−1
STSH

)

= tr

((
N0I + STSH

)−1
K∑
k=1

TksksH
k

)

=
K∑
k=1

TksH
k

(
N0I + STSH

)−1
sk

=
K∑
k=1

sinrk
sinrk + 1
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where the last step follows again by the matrix inversion lemma and by using
the SINR expression found before.

• We argue that in the limit for large k, the quantity

µk = sH
kΣ
−1
k sk =

1
N0

sH
k

(
I +

1
N0

SkTkSH
k

)−1

sk
a.s.−→ 1

N0
ηSTSH

(
1
N0

)
does not depend on k any longer.

• Hence, in the limit, we have

lim
K→∞

1
K

K∑
k=1

Tkµk
Tkµk + 1

= 1− lim
K→∞

1
K

K∑
k=1

1

1 + Tk
N0
ηSTSH

(
1
N0

)
= 1− ηT

(
1
N0
ηSTSH

(
1
N0

))
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• By the definition of η-transform, we also have

lim
N→∞

1
N

N∑
i=1

λi
λi +N0

= 1− lim
N→∞

1
N

N∑
i=1

1
1 + 1

N0
λi

= 1− ηSTSH

(
1
N0

)

• Putting things together, letting γ = 1/N0, and recalling that K = βN ,

1− ηSTSH (γ) = β (1− ηT (γηSTSH (γ)))

such that they key equation (5) is proved.

• Next, we need to proof the expression for VSTSH(γ). To this purpose, we write
η = ηSTSH(γ), η̇ = d

dγη and define T ∼ FT(t) to be a RV distributed as the
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LSD of T. Then:

d

γ
βVT(γη) = βE

[
T

1 + γηT
(η + γη̇)

]
=

β

γ
E
[

γηT

1 + γηT

](
1 + γ

η̇

η

)
=

β

γ

(
1− E

[
1

1 + γηT

])(
1 + γ

η̇

η

)
=

β

γ
(1− ηT(γη))

(
1 + γ

η̇

η

)
=

1− η
γ

(
1 + γ

η̇

η

)
where we have used the key equation (5).

• Using the differential relation between Shannon transform and η-transform,
we have

d

dγ
VSTSH(γ) =

1− ηSTSH(γ)
γ

=
1− η
γ
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• Identifying terms, we obtain

d

dγ
VSTSH(γ) =

d

γ
βVT(γη) + η̇ − η̇

η

• Since for η = 0 both sides are equal to 0 (initial condition), integrating from 0
to γ we obtain (6).
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• Going back to our original problem, for the symmetric case we have Tk = P
for all k, such that

ηT(γ) =
1

1 + γP

• The sought expression for ηSSH(γ) is obtained by solving the quadratic
equation

β =
1− η

1− 1
1+Pγη

• Recalling that γ = 1/N0, and that snr = P/N0, we can redefine γ = snr and
obtain η = ηSSH(γ) as the solution of

γη2 + (1 + γ(β − 1))η − 1 = 0
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• Using the properties of the η-transform, we can choose the root of the above
equation corresponding to the sought η-transform:

ηSSH(γ) =
−(1 + γ(β − 1)) +

√
(1 + γ(β − 1))2 + 4γ

2γ

• Finally, using this into the expression of VSSH(γ) (see Theorem 4) we obtain
the sum rate of our symmetric DS-CDMA system.
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Further Results on the i.i.d. Case

• Non-symmetric DS-CDMA: in this case, each user is affected by its own
pathloss/shadowing frequency-flat channel gain

y = SAx + z

• Assuming equal transmit power for each user, the sum-rate is given by

VSTSH(γ) = βVT(γη) + log
1
η

+ η − 1, γ = snr =
P

N0
, T = AAH

and, by Theorem 4 where η is the solution of

β =
1− η

1− ηT(γη)
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Linear Receivers

• Often practical receivers are constrained to perform linear single-user
processing.

• The general structure of a linear receiver for the vector Gaussian MAC
channel is

x̃k = uH
ky = (uH

hsk)Akxk +
∑
j 6=k

(uH
ksj)Ajxj + uH

kz

• The resulting SINR is given by

sinrk =
|uH
hsk|2Tk

snr−1‖uk‖2 +
∑
j 6=k |uH

ksj|2Tj

with Tk = |Ak|2.
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• Among all linear receivers, the one that maximizes the SINR i stye linear
MMSE receiver, already discussed before. The resulting SINR is given by

sinrk =
Pk

MMSEk
−1 = snrTksH

k

I + snr
∑
j 6=k

sjsH
j Tj

−1

sk
a.s.−→ snrTk ηSTSH(snr)

• Notice that if user k was alone in the system its SINR would be equal to
its receiver SNR, snrTk. Hence, ηSTSH(snr) collects the global effect of the
multiuser interference on each specific user k.

• In fact, ηSTSH(snr) is referred to as the multiuser efficiency of the linear MMSE
receiver (this is how the name η-transform was originated in first place).
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• The achievable sum rate with linear MMSE is given by

Rmmse
sum = βE [log (1 + snrT ηSTSH(snr))] = βVT (snrηSTSH(snr))

where T ∼ FT(t).

• Comparing the optimal sum rate with the sum rate achieved by linear MMSE
processing, we arrive at

Rsum = Rmmse
sum + log

1
η

+ η − 1︸ ︷︷ ︸
non-linear gain

• In passing: this decomposition, observed to hold for a variety of non-
Gaussian inputs, AWGN channels, is at the basis of the “MMSE-I” identity
[Guo, Verdú, Shamai, “Mutual Information and Minimum Mean-Square Error
in Gaussian Channels,” IT 2005]:

d

dγ
I(X;

√
γX + Z) =

1
2
mmse(X,

√
γX + Z)
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MIMO point-to-point

• The capacity of the MIMO channel with perfect CSIR and no CSIT is given
by

C(snr) = max
P (x):tr(Σx)≤P

I(x; Hx + z|H)

• Maximization of the mutual information:

I(x; Hx + z|H) = h (Hx + z|H)− h(z)

= h (Hx + z|H)−N log(πeN0)

≤ E
[
log
∣∣∣∣I +

1
N0

HΣxHH

∣∣∣∣]
where the upper bound is achieved by letting x ∼ CN (0,Σx).

• In order to obtain the capacity we have to solve a convex optimization
problem (maximization with respect to the convex set S = {Σx : tr(Σx) ≤
P}).
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• This maximization depends on the statistics of the channel matrix H.

• In the simplest case, H is formed by i.i.d. elements ∼ CN (0, 1) (normalized
independent Rayleigh fading).

• This distribution has the unitary invariant property: for any unitary matrix Q
independent of H, H and HQ are i.i.d.. It follows that

max
Σx∈S

E
[
log
∣∣∣∣I +

1
N0

HΣxHH

∣∣∣∣] = max
Λx∈D

E
[
log
∣∣∣∣I +

1
N0

HΛxHH

∣∣∣∣]
where D is the set of non-negative diagonal matrices with trace not larger

than P .
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• Letting Ππ denote the M × M permutation matrix corresponding to the
permutation π, we have, for any Λx ∈ D

E
[
log
∣∣∣∣I +

1
N0

HΛxHH

∣∣∣∣] =
1
M !

∑
π

E
[
log
∣∣∣∣I +

1
N0

HΠπΛxΠT
πH

H

∣∣∣∣]

≤ E
[

log

∣∣∣∣∣I +
1
N0

H

(
1
M !

∑
π

ΠπΛxΠT
π

)
HH

∣∣∣∣∣
]

≤ E
[
log
∣∣∣∣I +

P

N0M
HHH

∣∣∣∣]

• This upper bound is clearly achievable by letting Λx = (P/M)I.

• It follows that the MIMO capacity with perfect CSIR and no CSIT, under the
unitary right invariant condition for the channel matrix statistics, is given by

C(snr) = E
[
log
∣∣∣I +

snr
M

HHH
∣∣∣]
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• For the i.i.d. Rayleigh fading case, we can compute this expression exactly
for finite M,N (complicated).

• Nevertheless, for large M,N with fixed ratio M/N = β, we can quickly use
the previous developed results to have a very precise expression that yields
accurate results also for finite and small M,N .

• Let S = 1√
N

H, then

C(snr) = E
[
log
∣∣∣∣I +

snr
β

SSH

∣∣∣∣]

• Dividing by N , we obtain C(snr) ≈ Nc(snr) where

c(snr) = lim
N→∞

1
N

E
[
log
∣∣∣∣I +

snr
β

SSH

∣∣∣∣]
= β log

(
1 +

snr
β
η

)
+ log

1
η

+ η − 1
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where η is given by

η =
−(β + snr(β − 1)) +

√
(β + snr(β − 1))2 + 4βsnr

2snr

• In order to see this, just notice that this coincides with the previous studied
case with T = I and γ = snr

β .

• An example for N = 3 and M = 2:
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End of Lecture 2
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Lecture 3:
Matrices with Variance Profile
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Structured Matrices H = CSA

• H = CSA, with S i.i.d. N ×K as before (mean zero and variance 1/N , well-
behaved), C and A are N×N and K×K such that D = CCH and T = AAH

have compactly supported LSDs. C,S,A statistically independent.

Theorem 5. Under the above conditions, as N →∞ with K/N = β,

ηHHH(γ) = E [ΓHHH(D, γ)]

where ΓHHH(d, γ) is the unique non-negative solution of the following implicit
equation:

ΓHHH(d, γ) =
1

1 + γβdE
[

T
1+γTE[DΓHHH(D,γ)]

]
and where D and T are independent RVs following the LSDs of D and T,

respectively. �
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• How do we solve the implicit equation? By discretization.

• Define a suitable discretization {di : i = 1, . . . ,m} and {tj : j = 1, . . . , n} (the
supports of D andT are bounded).

• For any γ > 0, we obtain the coupled system of equations given by

Γ(di, γ) =
1

1 + γβdi
∑m
j=1 tjΥ(tj, γ)PT(j)

, i = 1, . . . ,m

Υ(tj, γ) =
1

1 + γtj
∑m
i=1 diΓ(di, γ)PD(i)

, j = 1, . . . , n

• This can be solved recursively, starting from the all-ones initial condition.

• Sanity check: suppose D = I and T = I, then HHH = SSH, such that
ηHHH(γ) = ΓHHH(1, γ) = η, and we have

η =
1

1 + γβ 1
1+γη

⇒ γη2 + (1 + γ(β − 1))η − 1 = 0
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Theorem 6. Under the same conditions of Theorem 5 and S is unitarily
invariant, as N →∞ with K/N = β, the Shannon transform of HHH is given by

VHHH(γ) = VD(βγd) + βVT(γt)− βγdγt
γ

where γd and γt are implicitly given by

γdγt
γ

= 1− ηT(γt), β
γdγt
γ

= 1− ηD(βγd)

Furthermore, we have the alternative η-transform expression

ηHHH(γ) = ηD(βγd)

�
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Proof:

• We start with the alternative η-transform expression: using Theorem 5 we
have

ηHHH(γ) = E
[

1
1 + βγdD

]
= ηD(βγd)

where we define
γt = γE[DΓHHH(D, γ)], (7)

and

γd = E
[

γT

1 + Tγt

]
. (8)

• Multiplying both sides of (8) by γt/γ we find

γtγd
γ

= 1− ηT(γt)

consistently with Theorem 6.
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• Using the expression of ΓHHH(d, γ) in Theorem 5, rewritten as

ΓHHH(d, γ) =
1

1 + βdγd

into (7), we find

γt = E
[

γD

1 + βDγd

]
,

which can be rewritten as

β
γtγd
γ

= 1− ηD(βγd)

consistently with Theorem 6.

70



• In order to prove the Shannon transform expression, we notice that

VHHH(γ) = lim
N→∞

1
N

E
[
log
∣∣I + γCSTSHCH

∣∣]
= lim

N→∞
1
N

E
[
log
∣∣∣I + γUΛ1/2

D VHSΛTSHVΛ1/2
D UH

∣∣∣]
= lim

N→∞
1
N

E
[
log
∣∣∣I + γΛ1/2

D SΛTSHΛ1/2
D

∣∣∣]
= lim

N→∞
1
N

E
[
log
∣∣∣I + γH̃H̃H

∣∣∣]
= VeHeHH(γ)

where H̃ = Λ1/2
D SΛ1/2

T is an independent but not identically distributed matrix
with element variance

E[|H̃i,j|2] =
ditj
N

• This is a special case of a more general class of matrices to be treated next
(TO BE CONTINUED).
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Structured Matrices H = A� S

• Let H = A� S, where S is N ×K as before, and A is an element weighting
matrix with elements Ai,j =

√
Pi,j, such that Pi,j are uniformly bounded and

E[|Hi,j|2] =
Pi,j
N

• We define the variance profile as the function vn : [0, 1) × [0, 1) → R+ such
that

vN(x, y) = Pi,j, for (x, y) ∈
[
i− 1
N

,
i

N

)
×
[
j − 1
K

,
j

K

)

• As N → ∞, we assume that vN(x, y) → v(x, y) (uniform convergence),
where v(x, y) is bounded and measurable.

• The function v(x, y) is referred to as the asymptotic variance profile of H.
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Theorem 7. Under the above conditions, as N →∞ with K/N = β,

ηHHH(γ) = E [ΓHHH(X, γ)]

with ΓHHH(x, γ) satisfying the system of coupled fixed-point equations

ΓHHH(x, γ) =
1

1 + βγE [v(x,Y)ΥHHH(Y, γ)]
(9)

ΥHHH(y, γ) =
1

1 + γE [v(X, y)ΓHHH(X, γ)]
(10)

where X and Y are independent RVs, uniform over [0, 1]. �

Theorem 8. Under the above conditions, as N → ∞ with K/N = β, for any
a < b with a, b ∈ [0, 1] we have

1
N

bbNc∑
i=bbNc

[(
I + γHHH

)−1
]
i,i

a.s.−→
∫ b

a

ΓHHH(x, γ)dx

where ΓHHH(x, γ) is defined by (9) - (10). �
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Theorem 9. Under the above conditions, define the quantity

z(N)(y, γ) = hH
j

I + γ
∑
`6=j

h`hH
`

−1

hj,
j − 1
K
≤ y < j

K
.

As N →∞ with K
N = β, z(N)(y, γ) converges almost surely to the limit z(y, γ),

given by the solution of the fixed-point equation

z(y, γ) = E

 v(X, y)

1 + γ β E
[

v(X,Y)
1+γ z(Y,γ) |X

]
 , y ∈ [0, 1].

where X and Y are independent RV, uniform over [0, 1]. �

• For a proof of Theorems 7 and 8 see [V. L. Girko, Theory of Random
Determinants. Dordrecht: Kluwer Academic Publishers, 1990].

• For a proof of Theorem 9 see [ A. M. Tulino, A. Lozano, and S. Verdú, Impact
of correlation on the capacity of multi-antenna channels, Bell Labs Technical
Memorandum ITD-03-44786F, 2003].
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Theorem 10. Under the above conditions, as N → ∞ with K/N = β, the
Shannon transform of the LSD of HHH is given by

VHHH(γ) = βE [log (1 + γE[v(X,Y)ΓHHH(X, γ)|Y])]

+ E [log (1 + γβE[v(X,Y)ΥHHH(Y, γ)|X])]

− γβE [v(X,Y)ΓHHH(X, γ)ΥHHH(Y, γ)]

where ΓHHH(x, γ) and ΥHHH(y, γ) are defined by (9) - (10). �

Proof:

• For simplicity of notation we drop the subscript HHH everywhere.

• By definition of Shannon transform, we have

V(γ) =
∫

log(1 + γλ)dF (λ)
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• Taking the derivative with respect to γ, we have

V̇(γ) =
1− η(γ)

γ
=

1
γ

(1− E[Γ(X, γ)])

where we have used Theorem 7.

• Using (9) - (10) and rearranging terms, we can write

1− Γ(x, γ)
γ

=
βE[v(x,Y)Υ(Y, γ)]

1 + βγE[v(x,Y)Υ(Y, γ)]

• Adding and subtracting to the right-hand side the term

βγE[v(x,Y)Υ̇(Y, γ)]
1 + βγE[v(x,Y)Υ(Y, γ)]

we obtain

1− Γ(x, γ)
γ

=
d

dγ
log (1 + βγE[v(x,Y)Υ(Y, γ)])− βγE[v(x,Y)Υ̇(Y, γ)]

1 + βγE[v(x,Y)Υ(Y, γ)]

76



• Integrating both sides with respect to x, we obtain

V̇(γ) = E
[
d

dγ
log (1 + βγE[v(X,Y)Υ(Y, γ)|X])

]
−βγE

[
v(X,Y)Υ̇(Y, γ)Γ(X, γ)

]
where we used (9).

• We notice that

−γE
[
v(X,Y)Υ̇(Y, γ)Γ(X, γ)

]
= − d

dγ
(γE [v(X,Y)Υ(Y, γ)Γ(X, γ)])

+γE
[
v(X,Y)Υ(Y, γ)Γ̇(X, γ)

]
+E [v(X,Y)Υ(Y, γ)Γ(X, γ)]
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• Using (10), we can write

E
[
v(X,Y)(γΓ̇(X, γ) + Γ(X, γ))Υ(Y, γ)

]
= E

[
v(X,Y)(γΓ̇(X, γ) + Γ(X, γ))

1 + γE[v(X,Y)Γ(X, γ)|Y]

]

= E

E
[
v(X,Y)(γΓ̇(X, γ) + Γ(X, γ))|Y

]
1 + γE[v(X,Y)Γ(X, γ)|Y]
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• Replacing, we arrive at

V̇(γ) = E
[
d

dγ
log (1 + βγE[v(X,Y)Υ(Y, γ)|X])

]
−β d

dγ
(γE [v(X,Y)Υ(Y, γ)Γ(X, γ)])

+βE

E
[
v(X,Y)(γΓ̇(X, γ) + Γ(X, γ))|Y

]
1 + γE[v(X,Y)Γ(X, γ)|Y]


• Integrating with respect to γ and using V(0) = 0, we obtain

VHHH(γ) = βE [log (1 + γE[v(X,Y)ΓHHH(X, γ)|Y])]

+ E [log (1 + γβE[v(X,Y)ΥHHH(Y, γ)|X])]

− γβE [v(X,Y)ΓHHH(X, γ)ΥHHH(Y, γ)]
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Continuation of the Proof of Theorem 6

• Recall that we showed that

VHHH(γ) = VeHeHH(γ)

where H̃ = Λ1/2
D SΛ1/2

T = (dtT)� S, such that

E[|H̃i,j|2] =
ditj
N

• This is a special case of the general variance profile structure, where the
limiting variance profile is separable, i.e.,

v(x, y) = d(x)t(y)

• We introduce the new quantities:

Γ̃(γ) = E [d(X)Γ(X, γ)] , and Υ̃(γ) = E [t(Y)Υ(Y, γ)]
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• Rewriting (9) - (10) in this case yields

Γ̃(γ) = E
[

d(X)
1 + βγd(X)Υ̃(γ)

]
(11)

Υ̃(γ) = E
[

t(Y)
1 + γt(Y)Γ̃(γ)

]
(12)

• Introducing the RVs D = d(X) and T = t(Y), we can rewrite the above system
of equations as

Γ̃(γ) =
1

βγΥ̃(γ)

(
1− ηD

(
βγΥ̃(γ)

))
(13)

Υ̃(γ) =
1

γΓ̃(γ)

(
1− ηT

(
γΓ̃(γ)

))
(14)
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• Also, using the definition of Shannon transform, we have

E [log(1 + γE[v(X,Y)Γ(X, γ)|Y])] = E
[
log(1 + γTΓ̃(γ))

]
= VT(γΓ̃(γ))

and

E [log(1 + γβE[v(X,Y)Υ(X, γ)|X])] = E
[
log(1 + γβDΥ̃(γ))

]
= VD(γβΥ̃(γ))

and using separability and the fact that X and Y are independent, we have

γβE[v(X,Y)Γ(X, γ)Υ(Y, γ)] = γβΓ̃(γ)Υ̃(γ)

• Eventually, defining

γt = γΓ̃(γ), and γd = γΥ̃(γ)

and putting everything together, we obtain the desired result.

82



A Particularly Simple Case: Doubly-Regular Matrices

• Asymptotic row regularity: if the variance profile Pi,j of H satisfies (for all
α ∈ R)

1
K

K∑
j=1

1{Pi,j ≤ α} → G(α), for all rows i

• Asymptotic column regularity: Pi,j of H satisfies (for all α ∈ R)

1
N

N∑
i=1

1{Pi,j ≤ α} → G′(α), for all columns j

• The matrix is both asymptotically row regular and asymptotically column
regular, we say that it is asymptotically doubly regular. In this case

lim
K→∞

1
K

K∑
j=1

Pi,j = lim
N→∞

1
N

N∑
i=1

Pi,j
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• If the above limits are equal to 1, we say that the variance profile is standard.

Theorem 11. Consider a matrix H in the same conditions of Theorem 7, such
that its variance profile is standard asymptotically doubly regular. Then, the LSD
of HHH coincides with that of SSH (as if the elements of H were i.i.d.). �

Proof:

• Combining (9) and (10), we have

ηHHH(γ) = E [ΓHHH(X, γ)]

with
ΓHHH(x, γ) =

1

1 + βγE
[

v(x,Y)

1+γE[v(X,Y)ΓHHH(X,γ)|Y]

]
• We neglect again the subscript HHH for simplicity of notation, and notice that

because of the column regular condition we have that

E[v(X, y)Γ(X, γ)] = µ(γ), ∀ y
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• Also, because of the row regular condition we have that

E
[

v(x,Y)
1 + γE [v(X,Y)ΓHHH(X, γ)|Y]

]
= E

[
v(x,Y)

1 + γµ(γ)

]
=

E[v(x,Y)]
1 + γµ(γ)

is independent of x.

• We conclude that Γ(x, γ) = Γ(γ), independent of x.

• Letting µ(γ) = E[v(X, y)Γ(X, γ)] = Γ(γ)E[v(X, y)] = Γ(γ), since by the
standardization condition we have

E[v(X, y)] = E[v(x,Y)] = 1

we arrive at ηHHH(γ) = Γ(γ), where

Γ(γ) =
1

1 + βγ 1
1+γΓ(γ)

same as the key equation (5) of Theorem 4 for the matrix SSH.
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End of Lecture 3
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Lecture 4:
Multi-Cell Wireless Networks
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Multi-Cell Network Model
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Discretization of the Users Distribution

BS 1

user
group 2

user
group 4

user
group 1

. . . . .

BS 2

. . . . .
. . . . .

cell 1 cell 2

user
group 8

user
group 5

user
group 6

. . . . .

... ...

• We assume that the users are partitioned in co-located groups with N single-
antenna terminals each.

• We have A user groups per cluster, and clusters of B cells.

• We have M = ρN base station antennas per cell.
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Multiuser MIMO Downlink

• One channel use of the multi-cell MU-MIMO downlink is described by

yk =
∑
m

αm,kHH
m,kxm + nk,

for each user location k.

• Hm,k is the ρN × N small-scale fading channel matrix from the m-th BS to
the k-th user group, with i.i.d. ∼ CN (0, 1) elements.

• The per-BS average power constraint is expressed by tr (Cov(xm)) ≤ Pm.
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• We consider cooperating clusters of BSs (or sectors), such that each
cooperating cluster jointly process its signals and serves its user locations
using MU-MIMO, and take interference from other clusters.

• More in general: we can consider a multi-band architecture where different
intertwined patterns of cooperating clusters are defined for each subband,
in order to symmetrize the user performance and avoid “locations in the
boundary” on the whole system bandwidth.

• For a given location k in the reference cluster M, the Inter-Cluster
Interference (ICI) plus noise variance at any user group k is given by

σ2
k = E

 1
N

∥∥∥∥∥∥
∑
m/∈M

αm,kHH
m,kxm + nk

∥∥∥∥∥∥
2
 = 1 +

∑
m/∈M

α2
m,kPm.
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• LettingA andB denote the number of user locations and BSs in the reference
clusterM, and re-normalizing the signal at each user location k by σk, such
that its ICI plus noise variance is 1, we obtain

H =

 β1,1H1,1 · · · β1,AH1,A
... . . . ...

βB,1HB,1 · · · βB,AHB,A

 ,
with βm,k = αm,k

σk
.

• It follows that from our reference cluster point of view, the relevant downlink
channel model is given by

y = HHx + v (15)

with y = CAN , x = CρBN , and v ∼ CN (0, I).
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Gaussian Vector Broadcast Channel: A Primer

• Vector Gaussian BC:
y = HHx + z

• [Caire-Shamai, IT 2003, Viswanath and Tse, IT 2004, Vishwanath, Jindal
and Goldsmith, IT 2004, Yu and Cioffi, IT 2004, Weingarten, Steinberg and
Shamai, IT 2005].

• Let π denote a precoding order, such that signals are encoded in the order
π(K), π(K − 1), . . . , π(1).

• The Dirty-Paper Coding (DPC) achievable region Rdpc
π (H; S1:K) is given by

the set of rate points (R1, . . . , RK) such that

Rπ(k) ≤ log
1 + hH

π(k)

(∑k
j=1 Sπ(j)

)
hπ(k)

1 + hH
π(k)

(∑k−1
j=1 Sπ(j)

)
hπ(k)
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• The capacity region of the vector Gaussian BC subject to any convex
covariance constraint E[xxH] ∈ S is given by

CBC(H;S) = coh


⋃
π

⋃
PK
k=1 Sk∈S

Rdpc
π (H; S1:K)


• For the sum power constraint, the set S is given by {Σx � 0 : tr(Σx) ≤ P}.

• Similarly, we can consider per-antenna power constraint, per group of
antenna power constraint, or more general linear constraints in the form

tr(ΣxΦ`) ≤ P`, ` = 1, . . . , c

for some Φ` � 0 constraint matrices.

• How to calculate points on the boundary of C(H;S)? Uplink-Downlink Duality.
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• Consider the “dual” vector Gaussian MAC:

r = Hs + w

• Let π denote a successive decoding order, such that users are decoded in
the order π(1), π(2), . . . , π(K).

• The Successive Interference Cancellation (SIC) achievable regionRsic
π (H; q1:K)

is the set of rate points (R1, . . . , RK) such that

Rπ(k) ≤ log

∣∣∣I +
∑K
j=k hπ(j)hH

π(j)qπ(j)

∣∣∣∣∣∣I +
∑K
j=k+1 hπ(j)hH

π(j)qπ(j)

∣∣∣
• It is well-known that the MAC capacity region for user powers q1, . . . , qK is

given by

CMAC(H; q1:K) = coh

{⋃
π

Rsic
π (H; q1:K)

}
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• Duality subject to sum power constraint: for S = {Σx � 0 : tr(Σx) ≤ P} we
have

CBC(H;S) =
⋃

PK
k=1 qk≤P

CMAC(H; q1:K)

• It turns out that it is much easier to compute boundary points on the MAC
capacity region than on the BC capacity region.

• This is due to the fact that for fixed powers q1, . . . , qK, and channel matrix H
the MAC capacity region is a polymatroid.

• Weighted sum-rate maximization for the MAC:

maximize
∑
k

WkRk

subject to (R1, . . . , RK) ∈ CMAC(H; q1,...,K)

96



• Result: the solution is the vertex π that orders the weights in increasing order,
i.e.,

Wπ(1) ≤Wπ(2) ≤ · · · ≤Wπ(K)

• In this case, the objective function become

K∑
k=1

Wπ(k)R
sic
π(k)(H; q1:K) =

K∑
k=1

(
Wπ(k) −Wπ(k−1)

)
log

∣∣∣∣∣∣I +
K∑
j=k

hπ(j)hH
π(j)qπ(j)

∣∣∣∣∣∣
where, for convenience, we let π(0) = 0 and W0 = 0.

• In this way, we get rid of the combinatorial problem of choosing the optimal
decoding order (otherwise we have to search over all K! orders).

• Since the resulting function is concave, the optimization with respect to the
input powers q1, . . . , qK is easily accomplished.
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Back to our case ....

• The case of per-antenna or per-group of antennas power constraint is
more involved: see [W. Yu and T. Lan, “Transmitter optimization for the
multi-antenna downlink with per-antenna power constraints,” Transactions on
Signal Processing, 2007].

• The boundary of the capacity region of the Vector Gaussian BC (15) for
fixed channel matrix H and given per-group-of-antennas power constraints
{P1, . . . , PB} can be characterized by the solution of a min-max weighted
sum-rate problem.

• By symmetry, we restrict ourselves to the case of identical weights for users
in the same group.

• Let Wk and Rk(H) = 1
N

∑N
i=1Rk,i(H) denote the weight for user group k and

the corresponding instantaneous per-user rate, respectively.
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• Let π denote the permutation that sorts the weights in increasing orderWπ1 ≤
. . . ≤WπA.

• Let Hk denote the k-th ρBN ×N slice of H.

• Let Qk = diag(qk,1, . . . , qk,N) denote anN×N non-negative definite diagonal
matrix of the dual uplink users’ transmit powers.

• Let Q = diag(Q1, . . . ,QA) and, for given permutation π, let Hk:A =[
Hπk . . .HπA

]
and Qk:A = diag

(
Qπk, . . . ,QπA

)
.

• The rate point {Rk(H,W1, . . . ,WA)} on the boundary of the instantaneous
capacity region corresponding to weights {W1, . . . ,WA} is obtained as
solution of the min-max problem

min
λ≥0

max
Q≥0

A∑
k=1

WπkRπk(H) (16)
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where the instantaneous per-user rate of each group takes on the expression

Rπk(H) =
1
N

log

∣∣Σ(λ) + Hk:AQk:AHH
k:A

∣∣∣∣Σ(λ) + Hk+1:AQk+1:AHH
k+1:A

∣∣,
where Σ(λ) is a ρBN × ρBN block-diagonal matrix with ρN × ρN constant

diagonal blocks λmIρN , for m = 1, . . . , B and the maximization with respect
to Q is subject to the trace constraint

tr(Q) ≤
B∑

m=1

λmPm.

• Lagrange Multipliers: The variables λ = {λm} are the Lagrange multipliers
corresponding to the per-group-of-antennas power constraints.

• Ergodic capacity region (inner bound):

C(P1, . . . , PB) = coh
⋃

W1,...,WA≥0

{R : 0 ≤ Rk,i ≤ E [Rk(H,W1, . . . ,WA)] ,

∀k = 1, . . . , A, ∀i = 1, . . . , N
}

(17)
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• Fairness scheduling problem: let U(R) denote a strictly increasing and
concave network utility of the ergodic user rates. Then:

maximize U(R)

subject to R ∈ C(P1, . . . , PB) (18)
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Workplan

• In finite dimension, by applying the already mentioned stochastic optimization
framework, the solution R? of (18) can be approached by solving a sequence
of instantaneous weighted sum-rate maximizations.

• In the large system limit, N →∞, we can directly compute R? by combining
asymptotic RMT and convex optimization.

• Preliminary problem: for fixed λ, solve

maximize
A∑
k=1

Wπk

1
N

E
[

log

∣∣Σ(λ) + Hk:AQk:AHH
k:A

∣∣∣∣Σ(λ) + Hk+1:AQk+1:AHH
k+1:A

∣∣
]

subject to tr(Q) ≤ Q (19)

where Q ∆=
∑B
m=1 λmPm.
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Solution for finite N

• Letting ∆k
∆= Wπk−Wπk−1

with Wπ0 = 0, the objective function in (19) can be
written as

FW,λ(Q) =
A∑
k=1

∆k
1
N

E
[
log
∣∣Σ(λ) + Hk:AQk:AHH

k:A

∣∣]−WπA

1
N

log |Σ(λ)|

• The following results follow from the symmetry of the problem:

Lemma 1. The optimal Q in (19) allocates equal power to the users in the
same group. �

Lemma 2. The optimal λ? for the min-max problem (16) are strictly positive,
i.e., λ? > 0. �
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• We can restrict to consider Q with constant diagonal blocks Qk = Qk
N I.

• We define the modified channel matrix Hk
∆= 1√

N
Σ−1/2(λ)Hk and rewrite the

objective function as

FW,λ(Q1, . . . , QA) =
A∑
k=1

∆k
1
N

E
[

log

∣∣∣∣∣I +
A∑
`=k

Hπ`H
H

π`
Qπ`

∣∣∣∣∣
]

subject to the trace constraint
∑A
k=1Qk ≤ Q.

• The Lagrangian function of our problem becomes

L(Q1, . . . , QA; ξ) = FW,λ(Q1, . . . , QA)− ξ
(

A∑
k=1

Qk −Q
)
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• Using the differentiation rule ∂ log |X| = tr(X−1∂X), we write the KKT
conditions as

∂L
∂Qπj

=
j∑

k=1

∆k

N
E

tr

H
H

πj

[
I +

A∑
`=k

Hπ`H
H

π`
Qπ`

]−1

Hπj

 ≤ ξ
for j = 1, . . . , A, where equality must hold at the optimal point for all j such

that Qπj > 0.

• After some algebra and the application of the matrix inversion lemma, the
trace in the KKT conditions can be rewritten in the more convenient form

1
N

tr

H
H

πj

[
I +

A∑
`=k

Hπ`H
H

π`
Qπ`

]−1

Hπj


=

1
N

tr
(

H
H

πj
Θ−1
k:A\jHπj

[
I +QπjH

H

πj
Θ−1
k:A\jHπj

]−1
)

=
1−MMSE(j)

k:A

Qπj
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where we let Θk:A\j = I +
∑A
`=k,` 6=j Hπ`H

H

π`
Qπ`.

• MMSE(j)
k:A denotes the per-component MMSE for the estimation of sj from

r[k:A], for fixed (known) matrices Hπk, . . . ,HπA, for the observation model

r[k:A] =
A∑
`=k

√
Qπ` Hπ`s` + z, (20)

where sk, sK+1, . . . , sA and z are Gaussian independent vectors with i.i.d.
components ∼ CN (0, 1).

• Explicitly, we have

MMSE(j)
k:A =

1
N

tr
(

I−QπjH
H

πj

[
HπjH

H

πj
Qπj + Θk:A\j

]−1

Hπj

)
=

1
N

tr
([

I +QπjH
H

πj
Θ−1
k:A\jHπj

]−1
)

(21)
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• Solving for the Lagrange multiplier, we find

ξ =
1
Q

A∑
`=1

∑̀
k=1

∆k(1− E[MMSE(`)
k:A])

• Finally, we arrive at the KKT conditions

Qπj = Q

∑j
k=1 ∆k(1− E[MMSE(j)

k:A])∑A
`=1

∑`
k=1 ∆k(1− E[MMSE(`)

k:A])
(22)

for all j such that Qπj > 0.

• For all j such that Qπj = 0, the following inequality must hold

Q

j∑
k=1

∆k

N
E
[
tr
(
H

H

πj
Θ−1
k:A\jHπj

)]
≤

A∑
`=1

∑̀
k=1

∆k(1− E[MMSE(`)
k:A]) (23)
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Theorem 12. The solution Q?1, . . . , Q?A of problem (19) is given as follows. For
all j for which (23) is satisfied, then Q?πj = 0. Otherwise, the positive Q?πj satisfy
(22). �

• In finite dimension, an iterative algorithm that provably converges to the
solution can be obtained.

• The amount of calculation is tremendous because the average MMSE terms
must be computed by Monte Carlo simulation.

• In the limit for N → ∞, this is greatly simplified because the arguments of
the expectations converge to deterministic quantities, that we can compute
directly.
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Large system limit N →∞

• Normalized row and column indices r, t ∈ [0, 1).

• Aspect ratio of the matrix ν = A
ρB .

• Q(t): (dual uplink) transmit power profile:

Q(t) = Qπk, for
k − 1
A
≤ t < k

A
.

• G(r, t): channel gain profile:

G(r, t) =
β2
m,πk

λm
for

m− 1
B

≤ r < m

B
,

k − 1
A
≤ t < k

A
.
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• Ωk:A(t): average per-component MMSE profile:

Ωk:A(t) = MMSE(j)
k:A for

k − 1
A
≤ t < 1.

• zk:A(t): SINR profile:
zk:A(t) =

1
Ωk:A(t)

− 1.

Theorem 13. As N → ∞, for each k = 1, . . . , A, the SINR functions zk:A(t)
satisfy the fixed-point equation

zk:A(t) =
∫ 1

0

ρBG(r, t)Q(t) dr

1 + ν
∫ 1

(k−1)/A
ρBG(r,τ)Q(τ) dτ

1+zk:A(τ)

(24)

Also, the asymptotic Ωk:A(t) is given in terms of the asymptotic zk:A(t) as
Ωk:A(t) = 1/(1 + zk:A(t)). �
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Proof:

Consider the dual uplink model (20)

r[k:A] =
A∑
`=k

√
Qπ` Hπ`s` + z

The SINR for any user in group k ≤ j ≤ A, is given by

sinrπj ≈ Qπjh
H

πj

I +
A∑

`=k,` 6=j
Hπ`H

H

π`
Qπ`

−1

hπj

We apply Theorem 9, with the caveat that the variance profile of the matrix
{Hπ` : ` = k, . . . , A} is given by

v(r, t) =
{
ρBG(r, t)Q(t) for k−1

A ≤ t < 1
0 for 0 ≤ t < k−1

A
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• Using the fact that all these profile functions are piecewise constant, and
defining

zk:A(t) = z(j)
k:A, for

j − 1
A
≤ t < j

A
, j ≥ k

we obtain

z(j)
k:A = ρ

B∑
m=1

(β2
m,πj

/λm)Qπj

1 +
∑A
`=k

(β2
m,π`

/λm)Qπ`

1+z(`)
k:A

. (25)

• We also let the MMSE quantities of interest be given by

Ω(j)
k:A =

1

1 + z(j)
k:A

• Finally, we obtain a simple iterative algorithm to compute the optimal power
allocation profile for given weights {Wk} and Lagrange multipliers {λm}.
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Power optimization in the large system regime

• For notation simplicity we let πk = k for all k = 1, . . . , A (arbitrary π is
immediately obtained by reordering).

• Initialize Qk(0) = Q/A for all k = 1, . . . , A.

• For i = 0, 1, 2, . . ., iterate until the following solution settles:

Qj(i+ 1) = Q

∑j
k=1 ∆k(1− Ω(j)

k:A(i))∑A
`=1

∑`
k=1 ∆k(1− Ω(`)

k:A(i))
, (26)

for j = 1, . . . , A, where Ω(j)
k:A(i) = 1/(1 + z(j)

k:A(i)), and z(j)
k:A(i) is obtained

as the solution of the system of fixed point equations (25), for powers Qk =
Qk(i), ∀k.
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• Denote by z(j)
k:A(∞), Ω(j)

k:A(∞) and by Qj(∞) the fixed points reached by the
iteration at step 2). If the condition

Q

j∑
k=1

∆kz(j)
k:A(∞) ≤

A∑
`=1

∑̀
k=1

∆k

(
1− Ω(`)

k:A(∞)
)

(27)

is satisfied for all j such that Qj(∞) = 0, then stop.

• Otherwise, go back to the initialization step, set Qj(0) = 0 for j corresponding
to the lowest value of

∑j
k=1 ∆kz(j)

k:A(∞), and repeat the algorithm starting
from the new initial condition.
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Computation of the asymptotic rates

• The average rate of users in group k is given by

Rπk =
1
N

E
[

log

∣∣∣∣∣I +
A∑
`=k

Hπ`H
H

π`
Q?π`

∣∣∣∣∣
]
− 1
N

E

log

∣∣∣∣∣∣I +
A∑

`=k+1

Hπ`H
H

π`
Q?π`

∣∣∣∣∣∣


(28)

• In the limit for N → ∞, we can use the asymptotic analytical expression for
the mutual information given in Theorem 10, adapted to our case.
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• After identifying terms, we obtain

lim
N→∞

1
N

E
[

log

∣∣∣∣∣I +
A∑
`=k

Hπ`H
H

π`
Q?π`

∣∣∣∣∣
]

=

A∑
`=k

log

(
1 + ρQ?π`

B∑
m=1

(β2
m,π`

/λm)Γm

)

+ ρ

B∑
m=1

log

(
1 +

A∑
`=k

(β2
m,π`

/λm)Q?π`Υ`

)

− ρ

A∑
`=k

B∑
m=1

(β2
m,π`

/λm)Q?π`ΓmΥ` (29)

116



• For each k = 1, . . . , A, {Γm : m = 1, . . . , B} and {Υ` : ` = k, . . . , A} are the
unique solutions to the system of fixed point equations

Γm =
1

1 +
∑A
`=kQ

?
π`

(β2
m,π`

/λm)Υ`

, m = 1, . . . , B,

Υ` =
1

1 + ρ
∑B
m=1Q

?
π`

(β2
m,π`

/λm)Γm
, ` = k, . . . , A. (30)

• Although (29) is not in a closed form, {Γm} and {Υ`} in (30) can be solved
by fixed point iterations with A + B variables, that converge very quickly to
the solution to any desired degree of numerical accuracy.
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Minimization with respect to λ

• In finite dimension and fixed channel matrix, the min-max problem can
be solved by an infeasible-start Newton method. See [H. Huh, H. C.
Papadopoulos, and G. Caire, Multiuser MISO transmitter optimization for
intercell interference mitigation, Transactions on Signal Processing, 2010].

• A direct application to the large system limit requires asymptotic expressions
for the KKT matrix, involving the second-order derivatives of the Lagrangian
function with respect to {Qk} and λ: not amenable for easily computable
asymptotic limits.

• Idea: let GW(λ) denote the solution of (19). This is a convex function of λ
and the minimizing λ? must have strictly positive components by Lemma 2.

• Therefore, at the minimizing λ? we must have ∂GW
∂λm

∣∣∣
λ=λ? = 0 for all m =

1, · · · , B (solution is calculated by descent gradient iteration).
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• Obvious upper bound: let λm = 1 for all m = 1, . . . , B. This corresponds to
relax the per-BS power constraint to a per-cluster power constraint.

• We can prove that under certain symmetric conditions this bound is tight. In
particular, if the channel gain matrix β = {βm,k} can be partitioned into a
number of B × B strongly symmetric blocks, then the minimum is found at
λm = 1 for all m.

• Example for A = 8, B = 2:

BS 1

user
group 2

user
group 4

user
group 1

. . . . .

BS 2

. . . . .
. . . . .

cell 1 cell 2

user
group 8

user
group 5

user
group 6

. . . . .

... ...
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• The channel gain matrix takes on the palindrome form

β =
[
a b b a f e d c
f e d c a b b a

]

• This can be decomposed into the 4 strongly symmetric blocks[
a f
f a

]
,

[
b e
e b

]
,

[
b d
d b

]
,

[
a c
c a

]
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Computing the fairness rate point by convex optimization

• Recall the general dynamic optimization policy (fairness scheduling).

• Let Wk,i(t) denote the virtual queue backlog for user i in group k at time slot
t, evolving according to the stochastic difference equation

Wk,i(t+ 1) = [Wk,i(t)−Rk,i(H(t))]+ +Ak,i(t)

• At each time slot t, solve the weighted sum-rate maximization problem

maximize
A∑
k=1

N∑
i=1

Wk,i(t)Rk,i(H(t))

subject to tr(E[xmxH
m]) ≤ Pm (31)
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• The virtual arrival processes are given by Ak,i(t) = a?k,i, where the vector a?

is the solution of the maximization problem:

maximize V U(a)−
A∑
k=1

N∑
i=1

ak,iWk,i(t)

subject to 0 ≤ ak,i ≤ Amax (32)

for suitable control parameters V > 0 and Amax > 0.

• The long-time average rates

lim
τ→∞

1
τ

τ∑
t=1

Rk,i(H(t))

are guaranteed to converge to the optimal ergodic rates R?k,i within a gap
factor O(1/V ), while the expected backlog of the virtual queues increases as
O(V ).
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• We restrict the network utility function U(·) to be symmetric for users in the
same group and Schur-concave.

• Hence, equal average rates for users in the same group is optimal (R?k,i =
R?k).

• The optimum is found on the boundary of the region C(P1, . . . , PB),
parameterized by the weights {W1, . . . ,WA}.

• We rewrite (18) using the auxiliary variables r = [r1, . . . , rA] as:

min
λ

max
r,Q,π

U(r)

subject to rπk ≤
1
N

E

log

∣∣∣I +
∑A
`=kHπ`H

H

π`
Qπ`

∣∣∣∣∣∣I +
∑A
`=k+1 Hπ`H

H

π`
Qπ`

∣∣∣
 ,

tr(Q) ≤ Q, λ ≥ 0 (33)
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• The Lagrange function for (33) is given by

L(λ, r,Q, π,W) =

U(r)−
A∑
k=1

Wπk

rπk − 1
N

E

log

∣∣∣I +
∑A
`=kHπ`H

H

π`
Qπ`

∣∣∣∣∣∣I +
∑A
`=k+1 Hπ`H

H

π`
Qπ`

∣∣∣



= U(r)−
A∑
k=1

Wkrk︸ ︷︷ ︸
fW(r)

+
A∑
k=1

Wπk

1
N

E

log

∣∣∣I +
∑A
`=kHπ`H

H

π`
Qπ`

∣∣∣∣∣∣I +
∑A
`=k+1 Hπ`H

H

π`
Qπ`

∣∣∣


︸ ︷︷ ︸
hW(λ,Q,π)

(34)

• The Lagrange function can be decomposed into a sum of functions of r only,
denoted by fW(r), and a function of λ,Q and π only, denoted by hW(λ,Q, π).
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• The Lagrange dual function for the problem (34) is given by

G(W) = min
λ

max
r,Q,π

L(λ, r,Q, π,W)

= max
r

fW(r)︸ ︷︷ ︸
(a)

+ min
λ

max
Q,π

hW(λ,Q, π)︸ ︷︷ ︸
(b)

(35)

and it is obtained by the decoupled maximization in (a) (with respect to r)
and the min-max in (b) (with respect to λ,Q, π).

• Notice that problems (a) and (b) correspond to the static (deterministic time-
invariant) forms of (32) and (31), respectively, after identifying r with the
virtual arrival rates A(t) and W with the virtual queue backlogs W(t).

• Finally, we can solve the dual problem defined as

min
W≥0

G(W) (36)

via inner-outer subgradient iterations:
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Inner Problem: For given W, we solve (35) with respect to λ, r, Q and π.
This can be further decomposed into:

1. Subproblem (a): Since fW(r) is concave in r ≥ 0, the optimal r∗ readily
obtained by imposing the KKT conditions.

2. Subproblem (b): Taking the limit of N → ∞, this problem is solved by the
iterative algorithm given before for fixed λ > 0.

Outer Problem: the minimization of G(W) with respect to W ≥ 0 can be
obtained by subgradient adaptation.

1. Let λ∗, π∗, Q∗ and r∗(W) denote the solution of the inner problem for fixed
W.

2. For any W′, we have

G(W′) = max
r

fW′(r) + max
Q

hW′(λ
∗,Q, π∗)

≥ fW′(r∗(W)) + hW′(λ
∗,Q∗, π∗)

= G(W) +
A∑
k=1

(W ′k −Wk) (R∗k(W)− r∗k(W)) (37)

126



where R∗k(W) denotes the k-th group rate resulting from the solution of
the inner problem with weights W, which is efficiently calculated by the
iterative algorithm in the large-system regime.

3. A subgradient for G(W) is given by the vector with components R∗k(W) −
r∗k(W).

4. The dual variables W are updated at the n-th outer iteration according to

Wk(n+ 1) = Wk(n)− µ(n) (R∗k(W(n))− r∗k(W(n))) , ∀ k

for some step size µ(n) > 0 which can be determined by standard efficient
methods.
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Proportional fairness scheduling

• The network utility function for PFS is given as

U(r) =
A∑
k=1

log(rk)

• In this case, the KKT conditions for the inner subproblem (a) yield the solution

r∗k(W) =
1
Wk

, ∀ k

• Observation: the dual variables play the role of the virtual queue backlogs in
the dynamic scheduling policy, while the auxiliary variables r correspond to
the virtual arrival rates.
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• At the n-th outer iteration these variables are related by

Wk(n) =
1

r∗k(W(n))
.

• The virtual arrival rates of the dynamic scheduling policy are designed in
order to be close to the ergodic rates R? at the optimal fairness point.

• It follows that the usual intuition of PFS, for which the scheduler weights are
inversely proportional to the long-term average user rates, is recovered.
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Max-min (or “Hard”) fairness scheduling

• The network utility function for HFS is given as

U(r) = min
k=1,...,A

rk.

• This objective function is not strictly concave and differentiable everywhere.
Therefore, it is convenient to rewrite subproblem (a) by introducing an
auxiliary variable δ, as follows:

max
δ,r≥0

δ −
A∑
k=1

Wkrk

subject to rk ≥ δ, ∀ k (38)
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• The solution must satisfy rk = δ for all k, leading to

max
δ>0

(1−
A∑
k=1

Wk)δ.

• Since the original maximization is bounded while the above may be
unbounded, we must have that

∑A
k=1Wk = 1 and δ must enforce this

condition.

• The subgradient iteration for the weights W, using r∗k(W(n)) = δ∗(W(n)),
becomes

Wk(n+ 1) = Wk(n)− µ(n) (R∗k(W(n))− δ∗(W(n))) , ∀ k
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• Summing up the update equations over k = 1, . . . , A and using the condition
that

∑A
k=1Wk(n) = 1 for all n, we obtain

r∗k(W(n)) = δ∗(W(n)) =
1
A

A∑
j=1

R∗j(W(n)), ∀ k

• Intuitively: this creates the same arrival process for all the virtual queues,
which naturally yields the same service rate (for stability) and therefore the
equal-rate point on the boundary of the ergodic capacity region.
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Numerical Results: PFS, two cells
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Numerical Results: HFS, two cells
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2-dimensional 7-cell, 21 sectors, 84 user groups model

24

sector 1

sector 2

sector 3

main antenna lobe
of sector 1

base
stations

user group

(a) 3-sectored cell configuration

1 25

6 7

4 37'
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4" 3' 5"

4'

6"

5'

7"6'2"

(b) Wrap-around torus topology

Fig. 4. Two-dimensional three-sectored 7-cell model.

is noticeable.

Using the proposed asymptotic analysis, validated in the simple 2-cell model, we can obtain ergodic

rate distributions for much larger systems, for which a full-scale simulation would be very demanding.

We considered a two-dimensional cell layout where 7 hexagonal cells form a network and each cell

consists of three 120-degree sectors. As depicted in Fig. 4(a), three BSs are co-located at the center of

each cell such that each BS handles one sector in no cooperation case. Each sector is split into the 4

diamond-shaped equal-area grids and one user group is placed at the center of each grid. Therefore there

are total M = 21 BSs and K = 84 user groups in the network. In addition, we assume a wrap-around

torus topology as shown in Fig. 4(b), such that each cell is virtually surrounded by the other 6 cells

and all the cells have the symmetric ICI distribution. The antenna orientation and pattern follows [51]

and the non-ideal spatial antenna gain pattern (overlapping between sectors in the same cell) generates

interference even between sectors of the same cell. Fig. 6 shows the user rate distribution with PFS under

three levels of cooperation (a) no cooperation; (b) three-sector cooperation within each cell; and (c) full

cooperation over 7-cell network, as illustrated in Fig. 5. From the asymptotic rate results, it is shown that

in case (b), the cooperation gain over the case (a) is primarily obtained for the users around cell centers,

while the cooperation gain is attained over the whole cellular coverage area in case (c).

25

(a) No cooperation (b) three-sector cooperation within each

cell

(c) Full cooperation over 7 cells

Fig. 5. Cluster forms for three level of cooperation with different colors denoting different clusters.

VI. CONCLUSIONS

We considered the downlink of a multi-cell MU-MIMO cellular system where the pathloss and inter-

cell interference make the users’ channel statistics unequal. In this case, it is important to evaluate the

system performance subject to some form of fairness, formulated as the maximization of a concave

network utility function over the achievable ergodic rate region of the system. Downlink scheduling and

resource allocation in order to maximize a desired network utility function is a widely studied issue in

the literature, that has found several important practical applications [17], [44], [45]. Although dynamic

scheduling policies are well-known form in the theory of stochastic network optimization, the calculation

of the resulting ergodic throughput for a multiuser multi-cell MIMO downlink of practically relevant

size, including tens of cells, hundreds of users per cell, and clusters of jointly processed cooperating base

stations has been evaluated so far through very demanding system Monte Carlo simulation.

In this work, we used a large-system limit approach, where the number of base station antennas and

the number of users at each location go to infinity with a fixed ratio. In this regime, we presented a semi-

analytic method for the computation of the optimal fairness rate point, based on a combination of large

random matrix results and Lagrangian optimization. We proved that the system optimization subject to

per-BS power constraints coincides with the generally laxer sum-power constraint if the system satisfies

certain symmetry conditions. In any case, our analysis yields an efficient computation method of the

system throughput subject to general fairness criteria, through the iterative solution of a system of fixed-

point equations. Numerical results show that the rates predicted by the large-system analysis are indeed

remarkably close to the rates of the corresponding finite-dimensional systems obtained by Monte Carlo
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End of Lecture 4
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Lecture 5:
Downlink Beamforming
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Multi-Cell Network Model
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Discretization of the Users Distribution

BS 1

user
group 2

user
group 4

user
group 1

. . . . .

BS 2

. . . . .
. . . . .

cell 1 cell 2

user
group 8

user
group 5

user
group 6

. . . . .

... ...

• We assume that the users are partitioned in co-located groups with N single-
antenna terminals each.

• We have A user groups per cluster, and clusters of B cells.

• We have M = ρN base station antennas per cell.
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Multiuser MIMO Downlink

• Channel model for the cooperative cluster MU-MIMO model is exactly as
already introduced before.

• LettingA andB denote the number of user locations and BSs in the reference
clusterM, and re-normalizing the signal at each user location k by σk, such
that its ICI plus noise variance is 1, we obtain

H =

 β1,1H1,1 · · · β1,AH1,A
... . . . ...

βB,1HB,1 · · · βB,AHB,A

 ,
with βm,k = αm,k

σk
.

• It follows that from our reference cluster point of view, the relevant downlink
channel model is given by

y = HHx + v
with y = CAN , x = CρBN , and v ∼ CN (0, I).
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Linear Zero-Forcing Beamforming: A Primer

• A simple alternative to DPC: linear ZF beamforming (ZFBF).

• Assume H M ×K tall and full column rank. Then, we let

x = VQ1/2u

• u ∈ CK contains the users’ information-bearing code symbols (downlink
streams), with E[uuH] = I.

• V is the precoding matrix with unit-norm columns.

• Q is a diagonal weighting matrix that contains the power allocated for each
downlink stream.
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• The ZFBF precoding matrix is obtained as

V = H+Λ−1/2

where
H+ = H(HHH)−1

is the Moore-Penrose pseudo-inverse of the downlink channel matrix HH,
and where the column-normalizing matrix Λ has elements

Λk =
1[

(HHH)−1
]
k,k

• The resulting ZFBF-precoded downlink channel is given by

y = Λ1/2Q1/2u + v

where inter-cluster multiuser interference is completely removed.
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ZFBF in the Large System Regime

• Suppose that H is a matrix with variance profile, with N →∞ and K/N = β.

Theorem 14. (Corollary of Theorem 9) Defining the effective dimension ratio
as

β′ = β
P (E[v(X,Y)|Y] 6= 0)
P (E[v(X,Y)|X] 6= 0)

,

and let z(y, γ) be the function defined by Theorem 9. As γ goes to infinity, we
have

lim
γ→∞z(y, γ) =

{
Ψ∞(y) if β′ < 1
0 if β′ ≥ 1 (39)

where, for ν′ < 1, Ψ∞(y) is the positive solution to

Ψ∞(y) = E

 v(X, y)

1 + νE
[
v(X,Y)
Ψ∞(Y)

∣∣∣X]
 (40)
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• We wish to characterize the asymptotic expression (for large N ) of the ZFBF
channel coefficients Λk.

• Using the well-known formula for the inverse of a 2 × 2 block matrix, we can
write the (k, k) diagonal element of the matrix (I + γHHH)−1 as

[(
I + γHHH

)−1
]
k,k

=
1

1 + γhH
k

I + γ
∑
6̀=k

h`hH
`

−1

hk
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• Furthermore, assuming that H has full rank, then[(
HHH

)−1
]
k,k

= lim
γ→∞ γ

[(
I + γHHH

)−1
]
k,k

= lim
γ→∞

γ

1 + γhH
k

I + γ
∑
` 6=k

h`hH
`

−1

hk

=
1

lim
γ→∞hH

k

I + γ
∑
`6=k

h`hH
`

−1

hk

• Comparing the definition of Λk with the above expression and using Theorem
14, we have that

lim
N→∞

Λk = lim
γ→∞z(y, γ) = Ψ∞(y),

for k−1
K ≤ y < k

N , i.e., for k = [yK], with y ∈ [0, 1).
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Network Utility Maximization (.... again)

• We follow the already mentioned approach of NUM.

• For a concave non-decreasing network utility function U(·) of the user
average rates, we wish to operate the system at the point solution of:

maximize U(R)

subject to R ∈ Rzfbf(P1, . . . , PB)

where Rzfbf(P1, . . . , PB) is the ergodic rate region achievable by ZFBF.

• As before, we start by considering the instantaneous weighted rate sum
maximization:

maximize
A∑
k=1

N∑
i=1

W
(i)
k R

(i)
k

subject to R ∈ Rzfbf(H)
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• The solution is generally combinatorial, since it requires a search over all
user subsets of cardinality less or equal to ρBN .

• Well-known approaches consider the selection of a user subset in some
greedy fashion, by adding users to the active user set one by one, till the
objective function cannot be improved further.

• User selection involves learning the channel from many users, and selecting
a subset: very inefficient in terms of CSIT feedback.

• We shall develop a scheme where users are preselected statistically, and
only the pre-selected users feed back their CSIT.
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Some simplifying assumptions

• The scheduler picks a fraction µk of users in group k by random selection
inside the group, independent from slot to slot.

• The ZFBF precoder is obtained by normalizing the columns of the Moore-
Penrose pseudo-inverse of the channel matrix, although this choice is not
necessarily optimal under the per-BS power constraint.

• Let µ = (µ1, . . . , µA) denote the fractions of active users in groups 1, . . . , A,
respectively. For given µ, the corresponding effective channel matrix is given
by

Hµ =

 β1,1H1,1(µ1) · · · β1,AH1,A(µA)
... ...

βB,1HB,1(µ1) · · · βB,AHB,A(µA)

 ,
• The user fractions must satisfy µk ∈ [0, 1] for each k = 1, . . . , A and µ

∆=
µ1:A ≤ ρB where we introduce the notation µ1:k =

∑k
j=1 µj.

149



ZFBF Channel for given user fractions µ

• Operating as before, we have

yµ = Λ1/2
µ Q1/2u + zµ

where Λ(i)
k (µ), the diagonal element of Λµ in position µ1:k−1N + i, for i =

1, . . . , µkN , is given by

Λ(i)
k (µ) =

1[(
HH

µHµ

)−1
](i)

k

• The optimization for the parallel channel model is still involved, since the
channel coefficients Λ(i)

k (µ) depend on the active user fractions µ in a
complicated and non-convex way.
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Power allocation for fixed µ

• We divide all channel matrix coefficients by
√
N and multiply the BS input

power constraints Pm by N , thus obtaining an equivalent system where the
channel coefficients have variance that scales as 1/N .

• Let q
(i)
k denote the diagonal element in position µ1:k−1N + i of Q,

corresponding to the power allocated to the i-th user of group k.

• Sum-power constraint:

1
N

tr(Q) =
1
N

A∑
k=1

µkN∑
i=1

q
(i)
k ≤ Psum

where Psum =
∑B
m=1Pm.

151



• Per-BS power constraint: let Φm denote a diagonal matrix with all zeros, but
for ρN consecutive ones, corresponding to positions from (m − 1)ρN + 1 to
mρN on the main diagonal.

• The per-BS power constraint is expressed in terms of the partial trace of the
transmitted signal covariance matrix as

1
N

tr
(
ΦmVµQVH

µ

)
≤ Pm, m = 1, . . . , B

or, more explicitly,

A∑
k=1

µkN∑
i=1

q
(i)
k θ

(i)
m,k ≤ Pm, m = 1, . . . , B

where we define the coefficients

θ
(i)
m,k(µ) =

1
N

mρN∑
`=(m−1)ρN+1

∣∣∣[Vµ
](i)
`,k

∣∣∣2
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and where
[
Vµ

](i)
`,k

denotes the element of Vµ corresponding to the `-th row
and the (µ1:k−1N + i)-th column.

• With ZFBF precoding, optimization w.r.t. {q(i)
k } for fixed µ and weights yields

maximize
A∑
k=1

µkN∑
i=1

W
(i)
k log(1 + Λ(i)

k (µ)q(i)
k )

subject to either the sum-power or the per-BS power constraint.

• Sum-power =⇒Waterfilling.

• Per-BS power =⇒ Easy Lagrangian dual/subgradient iteration solution.

• The Lagrangian is given by (dependency on µ is dropped for notation
simplicity)

L(q,λ) =
A∑
k=1

µkN∑
i=1

W
(i)
k log(1 + Λ(i)

k q
(i)
k )− λT [Θq−P]
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where λ ≥ 0 is a vector of dual variables corresponding to the B BS power
constraints, Θ is the B × µN matrix containing the coefficients θ(i)

m,k and P =
(P1, . . . , PB)T.

• The KKT conditions are given by

∂L
∂q

(i)
k

= W
(i)
k

Λ(i)
k

1 + Λ(i)
k q

(i)
k

− λTθ
(i)
k ≤ 0

where θ
(i)
k is the column of Θ containing the coefficients θ

(i)
m,k for m =

1, . . . , B.

• Solving for q(i)
k , we find

q
(i)
k (λ) =

[
W

(i)
k

λTθ
(i)
k

− 1

Λ(i)
k

]
+
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• Replacing this solution into L(q,λ), we solve the dual problem by minimizing
L(q(λ),λ) with respect to λ ≥ 0. It is immediate to check that for any λ′ ≥ 0,

L(q(λ′),λ′) ≥ L(q(λ),λ′) = (λ′ − λ)T(P−Θq(λ)) + L(q(λ),λ)

• Therefore, (P−Θq(λ)) is a subgradient for L(q(λ),ν).

• It follows that the dual problem can be solved by a simple B-dimensional
subgradient iteration over the vector of dual variables λ.
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Large system limit for Λk(µ)

• We let N →∞, when ρ,A,B, and µ are fixed.

• The large system limit expression for the coefficients Λ(i)
k (µ) and given by

Theorem 15. For all i = 1, . . . , µkN , the following limit holds almost surely:

lim
N→∞

Λ(i)
k (µ) = Λk(µ) = ρ

B∑
m=1

β2
m,kηm(µ)

where (η1(µ), . . . , ηB(µ)) is the unique solution in [0, 1]B of the fixed point
equations

ηm = 1−
A∑
q=1

µq
ηmβ

2
m,q

ρ
∑B
`=1 η`β

2
`,q

, m = 1, . . . , B

with respect to the variables η = {ηm}. �
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Proof:

• From Theorem 14 and the following observations, we have that

lim
N→∞

Λ(i)
k (µ) = Ψ∞(y),

evaluated at y such that

µ1:k−1N + i− 1
µN

≤ y < µ1:k−1N + i

µN

after replacing the general matrix H with Hµ given by our problem.

• Notice that the dimensions of Hµ are ρBN × µN and that µ ≤ ρB by
construction.

• The matrix Hµ is formed by independent blocks Hm,k(µk) of dimension ρN×
µkN , such that each block has i.i.d. CN (0, β2

m,k/N) elements.

• As N →∞, we have that the aspect ratio is ν = µ
ρB ≤ 1.
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• The asymptotic variance profile of Hµ is given by the piece-wise constant
function

v(x, y) = ρBβ2
m,k for (x, y) ∈

[
m− 1
B

,
m

B

)
×
[
µ1:k−1

µ
,
µ1:k

µ

)
with m = 1, . . . , B and k = 1, . . . , A.

• Also, we find explicitly

ν′ = ν

∑A
k=1

µk
µ 1
{

1
B

∑B
m=1 βm,k 6= 0

}
1
B

∑B
m=1 1

{
1
µ

∑A
k=1 µkβm,k 6= 0

}
and notice that the case ν′ < 1 always holds since, by construction,

rank(Hµ) = µN .

• As a matter of fact, the piece-wise constant form of v(x, y) yields that Λ(i)
k (µ)

converges to a limit that depends only on k (the user group) and not on i (the
specific user in the group).
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• This limit, indicated by Λk(µ) = Ψ∞(y) for y ∈
[
µ1:k−1
µ , µ1:k

µ

)
, is given by

Λk(µ) = ρ

B∑
m=1

β2
m,k

1 +
A∑
q=1

µq
β2
m,q

Λq(µ)

, k = 1, . . . , A

• In order to obtain the more convenient expression of Theorem 15, we
introduce the variables ηm ∈ [0, 1], for m = 1, . . . , B, and replace Λk(µ) =
ρ
∑B
m=1 β

2
m,kηm.

• Since ηm takes values in [0, 1], we can write ηm = 1/(1 + zm) for zm ≥ 0, and

solving for zm, we obtain zm =
∑A
q=1 µq

β2
m,q

Λq(µ).

• Eliminating the variables zm from the latter equation, we arrive at the desired
fixed point equation.
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Constant power on each user group

• Since the users in group k have identical Λk(µ), independent of i, by
symmetry we have that q(i)

k = qk for all active users in group k.

• Using this in the per-BS constraint, we obtain

A∑
k=1

qkθm,k(µ) ≤ Pm, m = 1, . . . , B,

where

θm,k(µ) =
µkN∑
i=1

θ
(i)
m,k(µ) =

1
N

µkN∑
i=1

mρN∑
`=1+(m−1)ρN

∣∣∣[Vµ
](i)
`,k

∣∣∣2 .
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Large system limit for θm,k(µ)

Theorem 16. For all m, k, the following limit holds almost surely:

lim
N→∞

θm,k(µ) =
µkη

2
m(µ)

(
β2
m,k + ξm,k

)
∑B
`=1 η`(µ)β2

`,k

where ξm = (ξm,1, . . . , ξm,A)T is the solution to the linear system

[I− ρM] ξm = ρMbm

where M is the A×A matrix

M =

[
B∑
`=1

η2
` (µ)b`bT

`

]
diag

(
µ1

Λ2
1(µ)

, . . . ,
µA

Λ2
A(µ)

)

and b` = (β2
`,1, . . . , β

2
`,A)T, and the coefficients {ηm(µ)} and {Λk(µ)} are

provided by Theorem 15. �
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Proof:

• We start with the following auxiliary result:

Let x be a n-dimensional vector with i.i.d. entries with variance 1
n. Let A and

C be n×n Hermitian symmetric matrices independent on x. Finally let D be
a n× n diagonal matrix independent on x. Then:

xHDH(DxxHDH + A)−1C(DxxHDH + A)−1Dx→ φ(DHA−1CA−1D)

(1 + φ(DHA−1D))2

where φ(·) = limn→∞ 1
ntr(·) and the convergence is almost surely.

• Using this lemma, we can proceed with the proof as follows:

θm,k(µ) =
1
N

µkN∑
i=1

mρN∑
`=1+(m−1)ρN

∣∣∣[Vµ
](i)
`,k

∣∣∣2
=

1
N

tr
(
ΦmVµΘkVH

µ

)
=

1
N

tr
(
ΦmHµ(HH

µHµ)−1Λ1/2
µ ΘkΛ

1/2
µ (HH

µHµ)−1HH
µΦm

)
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where Φm is a diagonal matrix with all zeros, but for ρN consecutive ones,
corresponding to positions from (m−1)ρN +1 to mρN on the main diagonal,
and where Θk denotes the µN -dimensional diagonal matrix with all zeros,
but for µkN consecutive ones, corresponding to positions from µ1:k−1N + 1
to µ1:kN on the main diagonal.

• The submatrix of ΦmHµ corresponding to the non-zero rows, i.e., including
rows from (m− 1)ρN + 1 to mρN , can be written as

[βm,1Hm,1(µ1), · · · , βm,AHm,A(µA)] = WmBm

where Wm is a ρN × µN rectangular matrix with i.i.d. entries, with mean 0
and variance 1/N , and

Bm = diag

βm,1, . . . , βm,1︸ ︷︷ ︸
µ1N

, . . . , βm,k, . . . , βm,k︸ ︷︷ ︸
µkN

, . . . , βm,A, . . . , βm,A︸ ︷︷ ︸
µAN
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• Also, we let

Ck = Λ1/2
µ ΘkΛ

1/2
µ

= diag

0, . . . , 0︸ ︷︷ ︸
µ1:k−1N

,Λ(1)
k (µ), . . . ,Λ(µkN)

k (µ)︸ ︷︷ ︸
µkN

, 0, . . . , 0︸ ︷︷ ︸
(µ−µ1:k)N


and notice that Bm and Ck have both dimension µN × µN .

• Letting the `-th row of Wm be denoted by wH
m,` we can write

HH
µHµ =

B∑
m=1

BmWH
mWmBm

= Bmwm,`wH
m,`Bm +

∑
j 6=`

Bmwm,jwH
m,jBm

+
∑
q 6=m

BqWH
qWqBq
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• In order to be able to apply our lemma, we need that the variance of the
elements of the i.i.d. vector wm,` (playing the role of x in the lemma), is equal
to the inverse of the vector length. Therefore, dividing by µ, we define

A =
1
µ

B∑
q=1

BqWH
qWqBq

and

Am,` = A− 1
µ

Bmwm,`wH
m,`Bm
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• Eventually, collecting all these expressions, we arrive at

θm,k(µ) =
1
Nµ

tr
(

1√
µ

WmBmA−1CkA−1BmWH
m

1√
µ

)

=
1
Nµ

ρN∑
`=1

1√
µ

wH
m,`Bm

(
1
µ

Bmwm,`wH
m,`Bm + Am,`

)−1

Ck

·
(

1
µ

Bmwm,`wH
m,`Bm + Am,`

)−1

Bmwm,`
1√
µ

→ ρ

µ

φ
(
BmA−1CkA−1Bm

)
(1 + φ (BmA−1Bm))2 (41)
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• At this point, our goal is to evaluate the two limit normalized traces.

• We start by the term in the denominator:

φ
(
BmA−1Bm

)
= lim

N→∞
1
µN

tr
(
BmA−1Bm

)
= lim

N→∞
1
µN

tr

((
1
µ

HH
µHµ

)−1

B2
m

)

= lim
N→∞

1
N

tr
((

HH
µHµ

)−1

B2
m

)

= lim
N→∞

1
N

A∑
k=1

µkN∑
i=1

β2
m,k

Λ(i)
k (µ)

=
A∑
k=1

µkβ
2
m,k

Λk(µ)
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where we used the fact that, by definition,[(
HH

µHµ

)−1
](i)

k

=
1

Λ(i)
k (µ)

for the diagonal elements of
(
HH

µHµ

)−1

in position µ1:k−1N + i for i =
1, . . . µkN , and the convergence result of Theorem 15.

• Also, comparing with the expression of zm in the proof of Theorem 15 we
have that

zm =
A∑
k=1

µkβ
2
m,k

Λk(µ)

• Since ηm(µ) = 1/(1 + zm), where {ηm(µ) : m = 1, . . . , B} are the auxiliary
variables defined in Theorem 15, we have that the denominator is given by(

1 + φ
(
BmA−1Bm

))2
= η−2

m (µ)
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• Next, we consider the numerator. For this purpose, let ζ be a dummy non-
negative real variable and consider the identity:

−d
dζ

tr
((
ζB2

m + A
)−1

Ck

)
= tr

(
Bm(ζB2

m + A)−1Ck(ζB2
m + A)−1Bm

)

• By almost-sure continuity of the trace with respect to ζ ≥ 0, it follows that the
desired expression for the numerator can be calculated as

φ
(
BmA−1CkA−1Bm

)
= lim

ζ↓0
−d
dζ
φ
((
ζB2

m + A
)−1

Ck

)
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• In order to compute the asymptotic normalized trace above, we use Theorem
8, that we recall here for convenience:

Let H be Nr×Nc of the variance profile type. For any a, b ∈ [0, 1] with a < b,

1
Nr

bbNrc∑
i=baNrc

[(
sHHH + I

)−1
]
i,i
→
∫ b

a

ΓHHH(x, s) dx

where Nc/Nr → ν and where ΓHHH(x, s) and ΥHHH(y, s) are functions
defined implicitly by the fixed-point equation

ΓHHH(x, s) =
1

1 + νsE [v(x,Y),ΥHHH(Y, s)]

ΥHHH(y, s) =
1

1 + sE [v(X, y),ΓHHH(X, s)]

for (x, y) ∈ [0, 1] × [0, 1], where X and Y are i.i.d. uniform-[0, 1] RVs and
where the variance profile function is v(x, y).
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• In order to use Theorem 8 in our case, we write

tr
((
ζB2

m + A
)−1

Ck

)
= tr

((
ζI + B−1

m AB−1
m

)−1
B−1
m CkB−1

m

)
=

1
ζ

tr

((
I +

1
ζ
B−1
m AB−1

m

)−1

B−1
m CkB−1

m

)

• Noticing that, by definition, A = 1
µHH

µHµ, we can identify the matrix
1√
µB−1

m HH
µ with the matrix H of the Lemma.

• In this case, Nr = µN and Nc = ρBN . Using {Bm} and {Wm} defined
before, we can write the block-matrix form

HH
µ =

[
B1WH

1 ,B2WH
2 , . . . ,BBWH

B

]
so that

B−1
m HH

µ =
[
B−1
m B1WH

1 ,B
−1
m B2WH

2 , . . . ,B
−1
m BBWH

B

]
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• It follows that the variance profile function of 1√
µB−1

m HH
µ is given by

vm(x, y) =
β2
`,k

β2
m,k

, for (x, y) ∈
[
µ1:k−1

µ
,
µ1:k

µ

)
×
[
`− 1
B

,
`

B

)

• Letting 1/ζ = s and using Theorem 8, we find

1
µN

µ1:kN∑
i=µ1:k−1N+1

[(
I + sB−1

m AB−1
m

)−1
]
i,i
→
∫ µ1:k/µ

µ1:k−1/µ

Γm(x, s) dx

where Γm(x, s) and Υm(y, s) are defined by

Γm(x, s) =
1

1 + ρBs
µ E [vm(x,Y),Υm(Y, s)]

Υm(y, s) =
1

1 + sE [vm(X, y),Γm(X, s)]
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• Noticing that vm(x, y) is piecewise constant, we have that also the functions
Γm(x, s) and Υm(y, s) are piecewise constant.

• With some abuse of notation, we denote the values of these functions as
{Γm,q(s), q = 1, . . . , A} and {Υm,`(s), ` = 1, . . . , B}, respectively, we find that
the fixed point equation can be re-written directly in terms of these values as

Γm,q(s) =
1

1 + s
µ

∑B
`=1

ρβ2
`,q

β2
m,q

Υm,`(s)
, for q = 1, . . . , A

Υm,`(s) =
1

1 + s
µ

∑A
q=1

µqβ2
`,q

β2
m,q

Γm,q(s)
for ` = 1, . . . , B

• Finally, using these results and noticing that the non-zero diagonal elements
of B−1

m CkB−1
m converge to the constant Λk(µ)β−2

m,k, we arrive at:

φ
((
ζB2

m + A
)−1

Ck

)
=
µk
ζµ

Γm,k(1/ζ)Λk(µ)β−2
m,k
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• It turns out that it is convenient to define the new variables

Sm,q(ζ) =
1

ζβ2
m,q

Γm,q(1/ζ), and Gm,`(ζ) = Υm,`(1/ζ)

• Therefore, we can rewrite

Sm,q(ζ) =
1

ζβ2
m,q + ρ

µ

∑B
`=1 β

2
`,qGm,`(ζ)

, for q = 1, . . . , A

Gm,`(ζ) =
1

1 + 1
µ

∑A
q=1 µqβ

2
`,qSm,q(ζ)

, for ` = 1, . . . , B

φ
((
ζB2

m + A
)−1

Ck

)
=

µk
µ

Λk(µ)Sm,k(ζ)
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• Taking the derivative, we obtain the desired numerator in the form

lim
ζ↓0
−d
dζ
φ
((
ζB2

m + A
)−1

Ck

)
=

µk
µ

Λk(µ) lim
ζ↓0
−d
dζ
Sm,k(ζ)

=
µk
µ

Λk(µ)Ṡm,k(0)

where we define Ṡm,k(0) = −d
dζ Sm,k(ζ)|ζ=0 and, for later use, Ġm,`(0) =

d
dζGm,`(ζ)|ζ=0.

• Next, we wish to find a fixed-point equation that yields directly Ṡm,k(0).
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• By continuity, we can replace directly ζ = 0 into the fixed point equations after
taking the derivatives. By doing so, we obtain:

Ṡm,q(0) =
β2
m,q + ρ

µ

∑B
`=1 β

2
`,qĠm,`(0)(

ρ
µ

∑B
`=1 β

2
`,qGm,`(0)

)2 , for q = 1, . . . , A

Ġm,`(0) =
1
µ

∑A
q=1 µqβ

2
`,qṠm,q(0)(

1 + 1
µ

∑A
q=1 µqβ

2
`,qSm,q(0)

)2, for ` = 1, . . . , B
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• Also, the equations for Sm,q(0) and Gm,`(0), obtained by replacing ζ = 0,
read:

Sm,q(0) =
1

ρ
µ

∑B
`=1 β

2
`,qGm,`(0)

, for q = 1, . . . , A

Gm,`(0) =
1

1 + 1
µ

∑A
q=1 µqβ

2
`,qSm,q(0)

, for ` = 1, . . . , B

• Using these equations, we obtain, for all ` = 1, . . . , B,

Gm,`(0) =
1

1 +
∑A
q′=1

µq′β2
`,q′

ρ
PB
`′=1

β2
`′,q′Gm,`′(0)

.
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• By multiplying both sides by ρβ2
`,q and summing over `, we find

Um,q = ρ

B∑
`=1

β2
`,q

1 +
∑A
q′=1

µq′β2
`,q′

Um,q′

,

where we define Um,q = ρ
∑B
`=1 β

2
`,qGm,`(0).

• Comparing the fixed point equation with the expression for Λk(µ) from
Theorem 15, we discover that Um,q = Λq(µ), independent of m. Using this
result we obtain

Sm,q(0) =
µ

Λq(µ)

• Using the definition of Um,q, we arrive at

Ṡm,q(0) =
µ2β2

m,q + µU̇m,q

Λ2
q(µ)

,

where, with some abuse of notation, we define U̇m,q = ρ
∑B
`=1 β

2
`,qĠm,`(0).
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• Multiplying both sides by ρβ2
`,q, using the expression of Ṡm,q(0) and summing

over `, we obtain

U̇m,q = ρ

B∑
`=1

β2
`,q

1
µ

∑A
q′=1 µq′β

2
`,q′Ṡm,q′(0)(

1 + 1
µ

∑A
q′=1 µq′β

2
`,q′Sm,q′(0)

)2

= ρ

B∑
`=1

β2
`,q

1
µ

∑A
q′=1 µq′β

2
`,q′

µ2β2
m,q′+µU̇m,q′
Λ2
q′(µ)(

1 +
∑A
q′=1

µq′β2
`,q′

Λq′(µ)

)2

= ρµ

A∑
q′=1

[
B∑
`=1

η2
` (µ)β2

`,qβ
2
`,q′

]
µq′

Λ2
q′(µ)

(
β2
m,q′ +

1
µ
U̇m,q′(µ)

)

• Somehow surprisingly, we notice that the last line is a system of A linear
equations in the A unknown {U̇m,q : q = 1, . . . , A}. Therefore, this can be
solved explicitly (although not in closed form in general).
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• In particular, we define the A×A matrix

M =

[
B∑
`=1

η2
` (µ)b`bT

`

]
diag

(
µ1

Λ2
1(µ)

, . . . ,
µA

Λ2
A(µ)

)

where b` = (β2
`,1, . . . , β

2
`,A)T, and the vector of unknowns U̇m, then, we the

linear system is given by

[I− ρM] U̇m = ρµMbm

• Solving the system we obtain the sought numerator in the form

µk
µ

Λk(µ)Ṡm,k(0) = µk
µβ2

m,k + U̇m,k

Λk(µ)
.
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• Finally, we obtain our final result:

θm,k(µ) =
ρ

µ

φ
(
BmA−1CkA−1Bm

)
(1 + φ (BmA−1Bm))2

=
ρ

µ

µk(µβ2
m,k + U̇m,k)
Λk(µ)

η2
m(µ)

=
µkη

2
m(µ)

(
β2
m,k + U̇m,k/µ

)
∑B
`=1 η`(µ)β2

`,k

where in the last line we used Theorem 15.

• Comparing the expression of Theorem 16 with the above we see that the two
expression coincide by letting ξm = U̇m/µ.
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See it to believe it!
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θ 1,
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Finite dimensional samples of θm,k(µ) with N = [4 8 16 32 64 128 256] (dots)
and asymptotic values in the large system limit (lines) for m = 1, k = 1, . . . , 8,

and µ = [0.5 0.5 0.75 1 1 0.75 0.5 0.5].
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System symmetry

• For symmetric systems (same definition as before), choosing the same user
fraction in each symmetric equivalence class of groups, yields

θm,k(µ) =
µk
B

independently of m.

• As a consequence, if all the BSs in the cluster have the equal power
constraint, i.e., P1 = . . . = PB = P , then for a symmetric system the per-BS
power constraint coincides with the sum power constraint with Psum = BP .

• This conclusion is analogous to what we have already found for the case of
DPC downlink precoding.

183



Weighted sum-rate maximization

• Sum power constraint: using our large-system results, we arrive at:

maximize
A∑
k=1

Wkµk log

(
1 + ρ

(
B∑

m=1

β2
m,kηm

)
qk

)

subject to
A∑
k=1

µkqk ≤ Psum,

A∑
k=1

µk ≤ ρB,

ηm = 1−
A∑
k=1

µk
ηmβ

2
m,k

ρ
∑B
`=1 η`β

2
`,k

, m = 1, . . . , B

0 ≤ ηm ≤ 1, m = 1, . . . , B

qk ≥ 0, 0 ≤ µk ≤ 1, k = 1, . . . , A
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• For per-BS constraint, the power constraint is replaced by

A∑
k=1

qkθm,k(µ) ≤ Pm, m = 1, . . . , B,

• These problems are generally non-convex in q,µ and η.

• For fixed η and µ, they are convex in q.

• For fixed η and q, we have a linear program with respect to µ.

• Finally, for fixed µ and q the problem is degenerate with respect to η because
of the equality constraint that corresponds to the fixed-point equation of
Theorem 15.

• We proposed a greedy search over the user fractions µ that yields near-
optimal results, inspired by the greedy user selection in finite dimension.
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Network utility function maximization

• In general, the solution of the weighted sum-rate maximization problem
for the case A > ρB (more users than antennas) yields an unbalanced
distribution of instantaneous rates, where some user classes are not served
at all (we have µk = 0 for some k).

• This is true even in the large system limit, since the ZFBF precoder is limited
by the rank of the channel matrix.

• This shows that, for a general strictly concave network utility function U(·),
the ergodic rate region R requires time-sharing even in the asymptotic large-
system case.

• Finding the solution of the optimal network utility maximization is therefore
extremely hard.

• Nevertheless, this solution can be computed to any level of accuracy by using
a method inspired by the dynamic scheduling policy (stochastic optimization)
approach.
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Virtual queues and weight update

• For each user group k = 1, . . . , A, define a virtual queue that evolves
according to

Wk(t+ 1) = [Wk(t)− rk(t)]+ + ak(t)
where rk(t) denotes the virtual service rate and ak(t) the virtual arrival

process.

• The queues are initialized by Wk(0) = rk(0) = 0. Then, at each iteration
t = 1, 2, . . ., the virtual arrival processes is given by ak(t) = a?k where a? is
the solution of

maximize V U(a)−
A∑
k=1

Wk(t)ak

subject to 0 ≤ ak ≤ Amax, ∀ k (42)

and where V,Amax > 0 are some suitably chosen constants, that determine
the convergence properties of the iterative algorithm.
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• The service rates are given by

rk(t) = µk(t) log

(
1 + ρ

(
B∑

m=1

β2
m,kηm(t)

)
qk(t)

)

where (µ(t),q(t),η(t)) is the solution of the joint power and user fraction
optimization problem for weights Wk = Wk(t).

• Let r(t) denote the vector of service rates generated by the above iterative
algorithm. Then, we can show that

lim inf
t→∞ U

(
1
t

t−1∑
τ=0

r(τ)

)
≥ U(R

?
)− K

V

where R
?

is the optimal ergodic rate point and K is a constant.
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Examples

• We consider a linear cellular arrangement whereM base stations are equally
spaced on the segment [−M,M ] km, in positions 2m−M−1 form = 1, . . . ,M
and K user groups are also equally spaced on the same segment, with K/M
user groups uniformly spaced in each cell.

• The distance dm,k between BS m and user group k is defined modulo
[−M,M ], i.e., we assume a wrap-around topology in order to eliminate
boundary effects.

• We use a distance-dependent pathloss model given by α2
m,k = G0/(1 +

(dm,k/δ)ν)) and the pathloss parameters, G0, ν, and δ follow the mobile
WiMAX system evaluation specifications, such that the 3dB break point is
δ = 36m, the pathloss exponent is ν = 3.504, the reference pathloss at
dm,k = δ is G0 = −91.64 dB, and the per-BS transmit power normalized
by the noise power at user terminals is P = 154 dB.
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Linear cellular layout

Example: linear cellular layout with M = 8 cells

BS 1 BS 2 BS 3 BS 4 BS 5 BS 6 BS 7 BS 8

|M�| = B = 1 cell cooperation

BS 1 BS 2 BS 3 BS 4 BS 5 BS 6 BS 7 BS 8

|M�| = B = 2 cell cooperation

BS 1 BS 2 BS 3 BS 4 BS 5 BS 6 BS 7 BS 8

|M�| = B = 8 cell cooperation

H. Huh (USC) Large System Analysis of Multi-cell MIMO Downlink May 12, 2011 17 / 52
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Comparison with finite dimensional systems

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Group location (km)

G
ro

up
 r

at
e 

(b
ps

/H
z)

 

 
Fin−dim, N=2
Fin−dim, N=4
Fin−dim, N=8
Asymptotic

B=8

B=1

B=2

User group rate in finite dimension (N = 2, 4, and 8) for cooperation clusters of
size B=1, 2, and 8, with perfect CSIT. M = 8 cells and K = 64 user groups.
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Increasing the number of antennas at each BC
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Cell sum rate versus the antenna ratio ρ for cooperation clusters of size B=1,
2, and 8. M = 8 cells and K = 192 user groups.
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End of Lecture 5
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Lecture 6:
Deterministic Approximations

194



Stieltjes Transform

• One of the mast useful tools in Random Matrix Theory is the Stieltjes
Transform, defined by

mX(z) = E
[

1
X − z

]
=
∫ ∞
−∞

1
x− zdFX(x), z ∈ C

• For non-negative X, mX(z) is analytical in C−R+.

• Stieltjes transform and moments:

mX(z) = −1
z

∞∑
k=1

E[Xk]
zk
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• Inversion formula:

fX(x) = lim
ω→0+

1
π

Im {mX(x+ jω)}

• Stieltjes transform and η-transform

ηX(γ) =
1
γ
mX

(
−1
γ

)
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A Recent Useful Result

• The following result turns out to be very useful to analyze cases of structured
channel matrices beyond the case of variance profile.

• For proofs, see [S. Wagner, R. Couillet, M. Debbah and D. T. M. Slock,
“Large System Analysis of Linear Precoding in Correlated MISO Broadcast
Channels under Limited Feedback,” IT Trans. 2012.].

• Consider a matrix B = HHH + Ξ, where Ξ ∈ CN×N is Hermitian symmetric
nonnegative definite, and H ∈ CN×K is formed by columns

hk = Ψkwk

with Ψk ∈ CN×rk and wk has i.i.d. elements with variance 1/N and 8-th
order moment that decreases as O(1/N4) (e.g., complex Gaussian will do).

• Define Θk = ΨkΨH
k and Q ∈ CN×N to be deterministic, with bounded

spectral norm.
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• Define the quantity

mB,Q(z) =
1
N

tr
(
Q(B− zI)−1

)

• Then, for z ∈ C−R+, as N →∞ with β = K/N , and βk = rk/N , we have

mB,Q(z)−mo
B,Q(z) a.s.−→ 0

wheremo
B,Q(z) is the Stieltjes transform of a non-negative RV with compactly

supported distribution, and is given by

mo
B,Q(z) =

1
N

tr

Q

(
1
N

K∑
k=1

Θk

1 + ek(z)
+ Ξ− zI

)−1
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with the terms {ek(z)} given by the unique non-negative solution of the
system of coupled fixed point equations

ek(z) =
1
N

tr

Θk

 1
N

K∑
j=1

Θj

1 + ej(z)
+ Ξ− zI

−1
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Sketch of Proof

• The goal is to find a convergent deterministic approximation (usually referred
to as “deterministic equivalent”) to the sequence of random variables
mB,Q(z), for N →∞.

• To this purpose, let D denote a sequence of deterministic matrices and
assume 1

N
tr
(
Q(B− zI)−1

)− 1
N

trD−1 a.s.−→ 0

• We use the “resolvent formula”: U−1−V−1 = −U−1(U−V)V−1, and write

Q(B− zI)−1 −D−1 = D−1
(
D− (B− zI)Q−1

)
Q(B− zI)−1

= D−1
(
D− (HHH + Ξ− zI)Q−1

)
Q(B− zI)−1
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• We postulate D = (R+Ξ−zI)Q−1, where R is a deterministic approximation
(in some sense) of the random matrix HHH to be specified later. Replacing,
we have

Q(B− zI)−1 −D−1 = D−1R(B− zI)−1 −D−1HHH(B− zI)−1

• Recalling that HHH =
∑K
k=1 ΨkwkwH

kΨk, we have

1
N

tr
(
D−1HHH(B− zI)−1

)
=

1
N

tr

(
D−1

K∑
k=1

ΨkwkwH
kΨk(B− zI)−1

)

=
1
N

K∑
k=1

wH
kΨk(B− zI)−1D−1Ψkwk
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• Next, we write B = Bk + ΨkwkwH
kΨH

k and apply the matrix inversion lemma,
to obtain

1
N

tr
(
D−1HHH(B− zI)−1

)
=

1
N

K∑
k=1

wH
kΨk(Bk − zI)−1D−1Ψkwk

1 + wH
kΨk(Bk − zI)−1Ψkwk

• Term should become similar to the second term

1
N

tr
(
D−1R(B− zI)−1

)

• Furthermore, for the trace lemma, notice that

wH
kΨk(Bk − zI)−1Ψkwk

a.s.−→ 1
N

tr (Θk(Bk − zI)) ≈ 1
N

tr (Θk(B− zI))

where the last approximate equality can be made asymptotically rigorous
(finite rank perturbation).
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• Our of good intuition, we choose

R =
1
N

K∑
k=1

Θk

1 + 1
N tr(Θk(B− zI)−1)

and let ek(z) = 1
N tr
(
Θk(B− zI)−1

) ≈ 1
N tr
(
Θk(R + Ξ− zI)−1

)
.

• Therefore, if this is true, the functions ek(z) must satisfy

ek(z) =
1
N

tr

Θk

 1
N

K∑
j=1

Θj

1 + ej(z)
+ Ξ− zI

−1


• The rest of the proof is dedicated to developing rigorous bounds to show that
this convergence actually occurs, and that the system of coupled equations
defining {ek(z)} converges to a unique solution compatible with the property
of Stieltjes transforms.
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Sanity check

• Suppose Ξ = 0, Q = I, Ψk =
√
TkI. Then B = STSH, in the form we have

already seen several times.

• Given the relation between Stieltjes transform and η-transform, we expect
that

1
γ
mB

(
−1
γ

)
= ηSTSH(γ) = η

solution of (from the key equation of Theorem 4)

η =
1

1 + βγE
[

T
1+γηT

]

• We wish to recover this result from the general deterministic equivalent case.
The iteration for {ek(z)} becomes

ek(z) =
Tk

β
K

∑K
j=1

Tj
1+ej(z)

− z
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• Dividing by Tk we find

ek(z)
Tk

=
1

β
K

∑K
j=1

Tj
1+ej(z)

− z

• We conclude that ek(z)/Tk does not depend on k. We call this quantity µ(z).
Therefore:

µ(z) =
1

β
K

∑K
j=1

Tj
1+Tjµ(z) − z

• Equivalently

µ(−1/γ)/γ =
1

1 + γβ 1
K

∑K
j=1

Tj
1+γTjµ(−1/γ)/γ
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• Identifying terms, we have µ(−1/γ)/γ = η(γ), such that we recover the fixed
point equation

η =
1

1 + γβ 1
K

∑K
j=1

Tj
1+γηTj

• Finally, we notice that in this special case we have

mB(z) =
1

β
K

∑K
k=1

Tk
1+ek(z)

− z

• Replacing z = −1/γ, ek(−1/γ) = Tkµ(−1/γ) = γTkη(γ), and multiplying
both sides by 1/γ, we find that mB(−1/γ)/γ = η(γ) since it satisfies the
same equation.
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Application: massive MIMO with antenna correlations

• In FDD systems, “massive MIMO” is impractical since the downlink training
and the CSIT feedback consume too many dimensions.

• Idea: we can exploit the channel correlation in order to achieve a channel
dimensionality reduction, while retaining the benefits of massive MIMO.

• Isotropic scattering, |u− u′| = λD:

E [h(u)h∗(u′)] =
1

2π

∫ π

−π
e−j2πD cos(α)dα = J0(2πD)

• Two users separated by a few meters (say 10 λ) are practically uncorrelated.
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• In contrast, the base station sees user groups at different AoAs under narrow
AS ∆ ≈ arctan(r/s).

✓

�
�

s

r

scattering ring

region containing the BS antennas

• This leads to the Tx antenna correlation model

h = UΛ1/2w, R = UΛUH

with
[R]m,p =

1
2∆

∫ ∆

−∆

ejk
T(α+θ)(um−up)dα.
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Joint Space Division and Multiplexing (JSDM)

• K users selected to form G groups, with ≈ same channel correlation.

H = [H1, . . . ,HG], with Hg = UgΛ1/2
g Wg.

• Two-stage precoding: V = BP.

• B ∈ CM×bg is a pre-beamforming matrix function of {Ug,Λg} only.

• P ∈ Cbg×Sg is a precoding matrix that depends on the effective channel.

• The effective channel matrix is given by

H =


BH

1H1 BH
1H2 · · · BH

1HG

BH
2H1 BH

2H2 · · · BH
2HG

... ... . . . ...
BH
GH1 BH

GH2 · · · BH
GHG

 .
209



• Per-Group Processing: If estimation and feedback of the whole H is still too
costly, then each group estimates its own diagonal block Hg = BH

gHg, and
P = diag(P1, · · · ,PG).

• This results in

yg = HH
gBgPgdg +

∑
g′ 6=g

HH
gBg′Pg′dg′ + zg
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Achieving capacity with reduced CSIT

• Let r =
∑G
g=1 rg and suppose that the channel covariances of the G groups

are such that U = [U1, · · · ,UG] is M × r tall unitary (i.e., r ≤M and UHU =
Ir).

• Eigen-beamforming (let bg = rg and Bg = Ug) achieves exact block
diagonalization.

• The decoupled MU-MIMO channel takes on the form

yg = HgHPgdg + zg = WH
gΛ1/2

g Pgdg + zg, for g = 1, . . . , G,

where Wg is a rg ×Kg i.i.d. matrix with elements ∼ CN (0, 1).

Theorem 17. For U tall unitary, JSDM with PGP achieves the same sum
capacity of the corresponding MU-MIMO downlink channel with full CSIT.
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Block Diagonalization

• For given target numbers of streams per group {Sg} and dimensions {bg}
satisfying Sg ≤ bg ≤ rg, we can find the pre-beamforming matrices Bg such
that:

UH
g′Bg = 0 ∀ g′ 6= g, and rank(UH

gBg) ≥ Sg

• Necessary condition for exact BD

Span(Bg) ⊆ Span⊥({Ug′ : g′ 6= g}).

• When Span⊥({Ug′ : g′ 6= g}) has dimension smaller than Sg, the rank
condition on the diagonal blocks cannot be satisfied.

• In this case, Sg should be reduced (reduce the number of served users per
group) or, as an alternative, approximated BD based on selecting r?g < rg
dominant eigenmodes for each group g can be implemented.
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Performance analysis with regularized ZF

• The transformed channel matrix H has dimension b × S, with blocks Hg of
dimension bg × Sg.

• For simplicity we allocate to all users the same fraction of the total transmit
power, pgk = P

S .

• For PGP, the regularized zero forcing (RZF) precoding matrix for group g is
given by

Pg,rzf = ζ̄gK̄gHg,
where

K̄g =
[
HgHH

g + bgαIbg
]−1

and where
ζ̄2
g =

S′

tr(HH
gKH

gBH
gBgKgHg)

.
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• The SINR of user gk given by

γgk,pgp =
P
S ζ̄

2
g |hH

gk
BgK̄gBH

ghgk|2
P
S

∑
j 6=k ζ̄2

g |hH
gk

BgK̄gBH
ghgj|2 + P

S

∑
g′ 6=g

∑
j ζ̄

2
g′|hH

gk
Bg′K̄g′BH

g′hg′j|2 + 1

• Using the “deterministic equivalent” method we can calculate γogk,pgp such
that

γgk,pgp − γogk,pgp
M→∞−→ 0

• First, we consider the terms appearing in the numerator and denominator in
γgk,pgp and express them as Stieltjes transforms of the form 1

M tr(Q(B−zI)−1)
evaluated as some appropriate value of z ∈ R−.

• Then, we repeatedly use the deterministic equivalent result.

• Finally, we pull all these terms together and express them as a single system
of fixed-point equations.

214



• For the sake of completeness, we include the final result (after many pages
of calculation): letting

R̄g = BH
gRgBg

denote the covariance matrix of users in group g, we have

γogk,pgp,rzf =
P
S ζ̄

2
g(m̄o

g)
2

ζ̄2
gῩo

g,g + (1 +
∑
g′ 6=g ζ̄

2
g′Ῡ

o
g,g′)(1 + m̄o

g)2
, (43)

where ζ̄2
g = P/G

Γ̄og
and the quantities m̄o

g, Ῡo
g,g, Ῡo

g,g′ and Γ̄og are given by
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m̄o
g =

1
b′

tr
(
R̄gT̄g

)
(44)

T̄g =
(
S′

b′
R̄g

1 + m̄o
g

+ αIb′
)−1

(45)

Γ̄og =
1
b′
P

G

n̄g
(1 + m̄o

g)2
(46)

Ῡo
g,g =

1
b′
S′ − 1
S′

P

G

n̄g,g
(1 + m̄o

g)2
(47)

Ῡo
g,g′ =

1
b′
P

G

n̄g′,g
(1 + m̄o

g′)
2

(48)
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n̄g =
1
b′tr
(
R̄gT̄gBH

gBgT̄g

)
1−

S′
b′ tr(R̄gT̄gR̄gT̄g)
b′(1+m̄o

g)
2

(49)

n̄g,g =
1
b′tr
(
R̄gT̄gR̄gT̄g

)
1−

S′
b′ tr(R̄gT̄gR̄gT̄g)
b′(1+m̄o

g)
2

(50)

n̄g′,g =
1
b′tr
(
R̄g′T̄g′BH

g′RgBg′T̄g′
)

1−
S′
b′ tr(R̄g′T̄g′R̄g′T̄g′)

b′(1+m̄o
g′)

2

(51)
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Example

• M = 100, G = 6 user groups, Rank(Rg) = 21, effective rank r∗g = 11.

• We serve S′ = 5 users per group with b′ = 10, r? = 6 and r? = 12.

• For r∗g = 12: 150 bit/s/Hz at snr = 18 dB: 5 bit/s/Hz per user, for 30 users
served simultaneously on the same time-frequency slot.
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Training, Feedback and Computations Requirements

• Full CSI: 100 × 30 channel matrix ⇒ 3000 complex channel coefficients per
coherence block (CSI feedback), with 100×100 unitary “common” pilot matrix
for downlink channel estimation.

• JSDM with PGP: 6 × 10 × 5 diagonal blocks ⇒ 300 complex channel
coefficients per coherence block (CSI feedback), with 10 × 10 unitary
“dedicated” pilot matrices for downlink channel estimation, sent in parallel
to each group through the pre-beamforming matrix.

• One order of magnitude saving in both downlink training and CSI feedback.

• Computation: 6 matrix inversions of dimension 5 × 5, with respect to one
matrix inversion of dimension 30× 30.
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Discussion: is the tall unitary realistic?

• For a Uniform Linear Array (ULA), R is Toeplitz, with elements

[R]m,p =
1

2∆

∫ ∆

−∆

e−j2πD(m−p) sin(α+θ)dα, m, p ∈ {0, 1, . . . ,M − 1}

• We are interested in calculating the asymptotic rank, eigenvalue CDF and
structure of the eigenvectors, for M large, for given geometry parameters
D, θ,∆.

• Correlation function

rm =
1

2∆

∫ ∆

−∆

e−j2πDm sin(α+θ)dα.
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• As M → ∞, the eigenvalues of R tend to the “power spectral density” (i.e.,
the DT Fourier transform of rm),

S(ξ) =
∞∑

m=−∞
rme

−j2πξm

sampled at ξ = k/M , for k = 0, . . . ,M − 1.

• After some algebra, we arrive at

S(ξ) =
1

2∆

∑
m∈[D sin(−∆+θ)+ξ,D sin(∆+θ)+ξ]

1√
D2 − (m− ξ)2

.
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Szego’s Theorem: eigenvalues

Theorem 18. The empirical spectral distribution of the eigenvalues of R,

F
(M)
R (λ) =

1
M

M∑
m=1

1{λm(R) ≤ λ},

converges weakly to the limiting spectral distribution

lim
M→∞

F
(M)
R (λ) = F (λ) =

∫
S(ξ)≤λ

dξ.
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Example: M = 400, θ = π/6, D = 1,∆ = π/10. Exact empirical eigenvalue cdf
of R (red), its approximation the circulant matrix C (dashed blue) and its

approximation from the samples of S(ξ) (dashed green).

0 0.5 1 1.5 2 2.50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Eigen Values

C
D

F

 

 
Toeplitz
Circulant, M finite
Circulant, M ∞

223



A less well-known Szego’s Theorem: eigenvectors

Theorem 19. Let λ0(R) ≤ . . . ,≤ λM−1(R) and λ0(C) ≤ . . . ,≤ λM−1(C)
denote the set of ordered eigenvalues of R and C, and let U = [u0, . . . ,uM−1]
and F = [f0, . . . , fM−1] denote the corresponding eigenvectors. For any interval
[a, b] ⊆ [κ1, κ2] such that F (λ) is continuous on [a, b], consider the eigenvalues
index sets I[a,b] = {m : λm(R) ∈ [a, b]} and J[a,b] = {m : λm(C) ∈ [a, b]},
and define U[a,b] = (um : m ∈ I[a,b]) and F[a,b] = (fm : m ∈ J[a,b]) be the
submatrices of U and F formed by the columns whose indices belong to the
sets I[a,b] and J[a,b], respectively. Then, the eigenvectors of C approximate the
eigenvectors of R in the sense that

lim
M→∞

1
M

∥∥∥U[a,b]UH
[a,b] − F[a,b]FH

[a,b]

∥∥∥2

F
= 0.

Consequence 1: Ug is well approximated by a “slice” of the DFT matrix.

Consequence 2: DFT pre-beamforming is near optimal for large M .
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Theorem 20. The asymptotic normalized rank of the channel covariance
matrix R, with antenna separation λD, AoA θ and AS ∆, is given by

ρ = min{1, B(D, θ,∆)},

with B(D, θ,∆) = |D sin(−∆ + θ)−D sin(∆ + θ)|.

Theorem 21. Groups g and g′ with angle of arrival θg and θg′ and common
angular spread ∆ have spectra with disjoint support if their AoA intervals [θg −
∆, θg + ∆] and [θg′ −∆, θg′ + ∆] are disjoint.
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DFT Pre-Beamforming
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• ULA with M = 400, G = 3, θ1 = −π
4 , θ2 = 0, θ3 = π

4 , D = 1/2 and ∆ = 15 deg.
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Super-Massive MIMO
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• Idea: produce a 3D pre-beamforming by Kronecker product of a “vertical”
beamforming, separating the sector into L concentric regions, and a
“horizontal” beamforming, separating each `-th region into G` groups.

• Horizontal beam forming is as before.

• For vertical beam forming we just need to find one dominating eigenmode
per region, and use the BD approach.

• A set of simultaneously served groups forms a “pattern”.

• Patterns need not cover the whole sector.

• Different intertwined patterns can be multiplexed in the time-frequency
domain in order to guarantee a fair coverage.
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An example

• Cell radius 600m, group ring radius 30m, array height 50m, M = 200
columns, N = 300 rows.

• Pathloss g(x) = 1
1+( xd0

)δ
with δ = 3.8 and d0 = 30m.

• Same color regions are served simultaneously. Each ring is given equal
power.
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Sum throughput (bit/s/Hz) under PFS and Max-min Fairness

Scheme Approximate BD DFT based
PFS, RZFBF 1304.4611 1067.9604
PFS, ZFBF 1298.7944 1064.2678

MAXMIN, RZFBF 1273.7203 1042.1833
MAXMIN, ZFBF 1267.2368 1037.2915

1000 bit/s/Hz × 40 MHz of bandwidth = 40 Gb/s per sector.
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End of Lecture 6
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The End (Thank You)
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