EE6340 - Information Theory
 Problem Set 3 Solution

February 23, 2013

1. a) No. of sequences containing 3 or fewer ones $=\binom{100}{3}+\binom{100}{2}+\binom{100}{1}+\binom{100}{0}=166751$

Given that all the codewords need to be of the same length, Minimum length required is

$$
\begin{equation*}
L_{\min }=\lceil\log 166751\rceil=\lceil 17.347\rceil=18 \tag{1}
\end{equation*}
$$

b) Probability of a sequence not being assigned any codeword
$=$ Probability of observing a sequence having greater than 3 ones
$=1-(0.995)^{100}-{ }^{100} C_{1}(0.995)^{99}(0.005)-{ }^{100} C_{2}(0.995)^{98}(0.005)^{2}-{ }^{100} C_{3}(0.995)^{97}(0.005)^{3}$ $=0.00167$
2. a) $H(X)=\frac{7}{8} \log \frac{8}{7}+\frac{1}{8} \log 8$
$x^{8} \in A_{\epsilon}{ }^{(8)} \Longrightarrow 2^{-8(H(X)+\epsilon)} \leq p\left(x_{1}, x_{2}, \ldots x_{8}\right) \leq 2^{-8(H(X)-\epsilon)}$
Lowest value of $\epsilon=0$ (known)
Since $n=8$ and $\mathbb{P}(1)=\frac{7}{8}, \mathbb{P}(0)=\frac{1}{8}$, consider the case of 1 zero and 7 ones(8 such sequences).
$\operatorname{Pr}($ each sequence $)=\frac{1}{8}\left(\frac{7}{8}\right)^{7}$
Now $H(X)=\frac{1}{8} \log _{2}\left[\left(\frac{8}{7}\right)^{8} 8\right] \Longrightarrow 2^{8 H(X)}=\left(\frac{8}{7}\right)^{8} \times 8$
$n=8 \Longrightarrow 2^{-n H(X)}=\left(\frac{7}{8}\right)^{7}\left(\frac{1}{8}\right)$
Thus $2^{-8 \epsilon} \leq \frac{p\left(x_{1}, x_{2}, x_{3}, \ldots \ldots x_{8}\right)}{\left(\frac{7}{8}\right)^{7}\left(\frac{1}{8}\right)} \leq 2^{8 \epsilon}$
Each sequence with 7 ones has probability $\left(\frac{7}{8}\right)^{7}\left(\frac{1}{8}\right)$. Thus, the typical set with $\epsilon=0$ has 8 sequences.
When $\epsilon=\frac{\log _{2} 7}{8}, 2^{-8 \epsilon}=\frac{1}{7}$
$\left(\frac{1}{7}\right)\left(\frac{1}{8}\right)\left(\frac{7}{8}\right)^{7} \leq p\left(x_{1}, x_{2}, \ldots x_{8}\right) \leq\left(\frac{7}{8}\right)^{8}$
\Longrightarrow for this $\epsilon, A_{\epsilon}^{(8)}$ contains sequences of all 1's, 7 1's and 61 's, $=1+8+28=37$ sequences. Thus for ϵ values such that $0 \leq \epsilon \leq \frac{\log _{2} 7}{8}$, the typical set contains exactly 8 sequences.
b) Elements of $A_{\epsilon}^{(8)}=\{01111111,10111111, \ldots \ldots, 11111110\}$
$\mathbb{P}\left(A_{\epsilon}^{(8)}\right)=8\left(\frac{1}{8}\right)\left(\frac{7}{8}\right)^{7}=\left(\frac{7}{8}\right)^{7}$
c) Let $N(\epsilon)=$ No. of elements in $A_{\epsilon^{\prime}}^{(n)}$ for $\epsilon^{\prime}=\epsilon$. Change in no.of sequences occurs at $\epsilon=$ $k \frac{\log _{2} 7}{8}, k=1,2, \ldots 7$
$N(\epsilon)=\{8,37,93, \ldots, 256$ (all sequences) $\}$
3. a) This follows from the property of the typical set that $\mathbb{P}\left(x^{n} \in A_{\epsilon}^{(n)}\right) \geq 1-\epsilon_{1}$. Hence, $\mathbb{P}\left(x^{n} \in\right.$ $\left.A_{\epsilon}^{(n)}\right) \rightarrow 1$.
b) From Law of Large Numbers, we can write $\mathbb{P}\left(x^{n} \in B^{n}\right) \geq 1-\epsilon_{2}$, i.e, there exists an n_{0} such that for every $n \geq n_{0}, \mathbb{P}\left(x^{n} \in B^{n}\right) \geq 1-\epsilon_{2}$.
Let n_{0} be such that both $\mathbb{P}\left(x^{n} \in A^{n}\right) \geq 1-\epsilon_{1}$ and $\mathbb{P}\left(x^{n} \in B^{n}\right) \geq 1-\epsilon_{2}$ are true $\forall n \geq n_{0}$

$$
\begin{aligned}
\mathbb{P}\left(A^{n} \cap B^{n}\right) & =\mathbb{P}\left(A^{n}\right)+\mathbb{P}\left(B^{n}\right)-\mathbb{P}\left(A^{n} \cup B^{n}\right) \\
& \geq 1-\epsilon_{1}+1-\epsilon_{2}-1\left(\text { Since } \mathbb{P}\left(A^{n} \cup B^{n}\right) \leq 1\right) \\
& =1-\epsilon_{1}-\epsilon_{2} \\
& \rightarrow 1 \text { as } n \rightarrow \infty
\end{aligned}
$$

c) $\left|A^{n} \cap B^{n}\right| \leq\left|A^{n}\right| \leq 2^{n(H+\epsilon)}$ (Intersection property)
d) Choose $\epsilon_{1}, \epsilon_{2}$ such that $\epsilon_{1}+\epsilon_{2}<\frac{1}{2}$ for some large n $\Longrightarrow \frac{1}{2} \leq \mathbb{P}\left(A^{n} \cap B^{n}\right)($ from $\operatorname{part}(\mathrm{b}))$

$$
\begin{aligned}
\frac{1}{2} & \leq \mathbb{P}\left(A^{n} \cap B^{n}\right) \\
& =\sum_{x^{n} \in A^{n} \cup B^{n}} \mathbb{P}\left(x^{n}\right) \\
& \leq \sum_{x^{n} \in A^{n} \cup B^{n}} \mathbb{P}\left(x^{n} \in A^{n}\right)\left(\text { Since } A^{n} \cup B^{n} \subset A^{n}\right) \\
& \leq 2^{-n(H-\epsilon)}\left|A^{n} \cap B^{n}\right|
\end{aligned}
$$

Thus, $\left|A^{n} \cap B^{n}\right| \geq \frac{1}{2} 2^{n(H-\epsilon)}$
4.

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left(p\left(X_{1}, X_{2}, \ldots . X_{n}\right)^{\frac{1}{n}}\right) \\
& =\lim _{n \rightarrow \infty} 2^{\log _{2}\left(p\left(X_{1}, X_{2}, \ldots . X_{n}\right)\right)^{\frac{1}{n}}} \\
& =\lim _{n \rightarrow \infty} 2^{\frac{1}{n}\left[\sum_{i=1}^{n} \log _{2}\left(p\left(X_{i}\right)\right]\right.}\left(X_{i} \text { S are independent }\right) \\
& =2^{\frac{n}{n} \mathbb{E}\left(\log _{2} p(X)\right)}(\mathrm{LLN}) \\
& =2^{-H(X)}(\text { Assuming } \mathrm{H}(\mathrm{X}) \text { exists })
\end{aligned}
$$

5. a) Since $X_{1}, X_{2}, \ldots X_{n}$ are i.i.d $\sim p(x)$,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} & -\frac{1}{n} \log q\left(X_{1}, X_{2}, \ldots . X_{n}\right) \\
= & -\frac{1}{n} \sum_{i=1}^{n} \log q\left(X_{i}\right)\left(X_{i} \mathrm{~S}\right. \text { are i.i.d) } \\
= & -\mathbb{E}(\log q(X)) \text { (From Law of large numbers) } \\
= & \left.-\sum p(x) \log q(x) \text { (Since each } X_{i} \text { is drawn from } \mathrm{p}(\mathrm{X})\right) \\
& =D(p \| q)+H(p)
\end{aligned}
$$

b) Limit of the log likelihood ratio

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty}-\frac{1}{n} \log \frac{q\left(X_{1}, X_{2}, \ldots . X_{n}\right)}{p\left(X_{1}, X_{2}, \ldots . X_{n}\right)} \\
& =-\frac{1}{n} \sum_{i=1}^{n} \log \frac{q\left(X_{i}\right)}{p\left(X_{i}\right)}\left(X_{i} \text { s are i.i.d }\right) \\
& =-\mathbb{E}\left(\log \frac{q(X)}{p(X)}\right) \\
& =-\sum p(x) \log \frac{q(x)}{p(x)} \\
& =D(p \| q)
\end{aligned}
$$

