EE6340-Information Theory

Problem Set 2 Solution

February 21, 2013

1. a) From $\mathrm{Z}=\mathrm{X}+\mathrm{Y}, \mathbb{P}(Z=z \mid X=x)=\mathbb{P}(Y=Z-x \mid X=x)$

$$
\begin{aligned}
H(Z \mid X) & =\sum_{x} p(x) H(Z \mid X=x) \\
& =-\sum_{x} p(x) \sum_{z} p(Z=z \mid X=x) \log _{2} p(Z=z \mid X=x) \\
& =-\sum_{x} p(x) \sum_{z} p(Y=z-x \mid X=x) \log _{2} p(Y=z-x \mid X=x) \\
& =\sum_{x} p(x) H(Y \mid X=x) \\
& =H(Y \mid X)
\end{aligned}
$$

If X and Y are independent, $H(Y \mid X)=H(Y)$.
Also, $H(Z \mid X) \leq H(Z)$ (conditioning reduces entropy).
$\therefore H(Z) \geq H(Z \mid X)=H(Y \mid X)=H(Y)$
$\Longrightarrow H(Z) \geq H(Y)$. Similarly, we can prove that $H(Z) \geq H(X)$.
b) Consider the two random variables X and Y such that $\mathbb{P}(X=0)=0.5, \mathbb{P}(X=1)=0.5$ and $X=-Y$ (dependent). So, $H(X)=H(Y)=1$ bit, while $H(Z)=0$ since $\mathbb{P}(z=0)=1$.
c) $H(Z) \leq H(X, Y) \leq H(X)+H(Y)$.

This is because Z is a function of X and Y and $I(X ; Y) \geq 0$. Both equalities are satisfied if Z is a bijection from $(\mathrm{X}, \mathrm{Y})(\Longrightarrow H(Z)=H(X, Y))$ and X and Y are independent $(\Longrightarrow$ $H(X, Y)=H(X)+H(Y))$.
2. a) We use algebra of entropies for the proof. Since X_{1} and X_{2} have disjoint support sets, define a function of X ,

$$
\begin{aligned}
& \theta=f(x)=\left\{\begin{aligned}
1 \text { when } X & =X_{1} \\
2 \text { when } X & =X_{2}
\end{aligned}\right. \\
& H(X)=H(X, f(X))=H(\theta)+H(X \mid \theta) \\
&=H(\theta)+p(\theta=1) H(X \mid \theta=1)+p(\theta=2) H(X \mid \theta=2) \\
&=H(\alpha)+\alpha H\left(X_{1}\right)+(1-\alpha) H\left(X_{2}\right)
\end{aligned}
$$

where $H(\alpha)=-\alpha \log _{2} \alpha-(1-\alpha) \log _{2}(1-\alpha)$
b) To maximise over α,
$\frac{d H(X)}{d \alpha}=0$
\Longrightarrow we get $\alpha_{\max }=\frac{2^{H\left(X_{1}\right)}}{2^{H\left(X_{1}\right)}+2^{H\left(X_{2}\right)}}$
Substituting $\alpha_{\max }$ in $H(X)$, we get
$H_{\text {max }}(X)=\log \left(2^{H\left(X_{1}\right)}+2^{H\left(X_{2}\right)}\right)$
$\Longrightarrow H(X) \leq H_{\max }(X)=\log \left(2^{H\left(X_{1}\right)}+2^{H\left(X_{2}\right)}\right)$
$\therefore 2^{H(X)} \leq 2^{H\left(X_{1}\right)}+2^{H\left(X_{2}\right)}$
Thus the effective alphabet sizes add if α is chosen as $\alpha_{\max }$.
c) Since X_{1} and X_{2} are Uniformly distributed, $H\left(X_{1}\right)=\log m$ and $H\left(X_{2}\right)=\log (n-m)$.

$$
\therefore \alpha_{\max }=\frac{m}{n} \text { and } H_{\max }(X)=\log \left(2^{H\left(X_{1}\right)}+2^{H\left(X_{2}\right)}\right)=\log (m+n-m)=\log n
$$

3. Let $P_{1}=\left\{p_{1}, p_{2}, \ldots, p_{i}, \ldots, p_{j}, \ldots . p_{m}\right\}$ and $P_{2}=\left\{p_{1}, p_{2}, \ldots ., \frac{p_{i}+p_{j}}{2}, \ldots, \frac{p_{i}+p_{j}}{2}, \ldots . p_{m}\right\}$

$$
\begin{aligned}
H\left(P_{2}\right)-H\left(P_{1}\right) & =-2\left(\frac{p_{i}+p_{j}}{2}\right) \log _{2}\left(\frac{p_{i}+p_{j}}{2}\right)+p_{i} \log _{2} p_{i}+p_{j} \log _{2} p_{j} \\
& =-\left(p_{i}+p_{j}\right) \log _{2}\left(\frac{p_{i}+p_{j}}{2}\right)+p_{i} \log _{2} p_{i}+p_{j} \log _{2} p_{j}
\end{aligned}
$$

Log-sum inequality $\Longrightarrow \sum_{i=1}^{n} a_{i} \log \frac{a_{i}}{b_{i}} \geq\left(\sum a_{i}\right) \log \frac{\sum a_{i}}{\sum b_{i}}$
$\Longrightarrow H\left(P_{2}\right)-H\left(P_{1}\right) \geq-p_{i} \log _{2} p_{i}-p_{j} \log _{2} p_{j}+p_{i} \log _{2} p_{i}+p_{j} \log _{2} p_{j}=0$
$\therefore H\left(P_{2}\right) \geq H\left(P_{1}\right)$.
Any transfer of probability that makes the distribution more uniform increases the entropy.
4. Since the run-lengths are functions of $X_{1}, X_{2}, \ldots X_{n}$, we can say $H(R) \leq H(X)$.

Any one X_{i} together with the run-lengths determines the entire sequence $X_{1}, X_{2}, \ldots X_{n}$.
Hence,

$$
\begin{aligned}
H\left(X_{1}, X_{2}, \ldots . X_{n}\right) & =H\left(X_{i}, R\right) \\
& =H(R)+H\left(X_{i} \mid R\right) \\
& \leq H(R)+H\left(X_{i}\right) \\
\leq H(R)+ & 1
\end{aligned}
$$

5. a) Example for $I(X ; Y \mid Z)<I(X ; Y)$:

X is a binary Random variable and $\mathrm{Y}=\mathrm{X}, \mathrm{Z}=\mathrm{Y}$. In this case,
$I(X ; Y)=H(X)-H(X \mid Y)=1-0=1$ and
$I(X ; Y \mid Z)=H(X \mid Z)-H(X \mid Y, Z)=0-0=0 \Longrightarrow \geq I(X ; Y \mid Z)<I(X ; Y)$
b) Example for $I(X ; Y \mid Z)>I(X ; Y)$:

As in Problem 1, consider two binary independent random variables X, Y such that $\mathrm{Z}=\mathrm{X}+\mathrm{Y}$. $\Longrightarrow I(X ; Y)=0$
But, $I(X ; Y \mid Z)=H(X \mid Z)-H(X \mid Y, Z)=H(X \mid Z)-0=H(X \mid Z)=\frac{1}{2} \Longrightarrow I(X ; Y \mid Z)>$ $I(X ; Y)$
6. By chain rule,
$I\left(X_{1} ; X_{2}, X_{3}, \ldots X_{n}\right)=I\left(X_{1} ; X_{2}\right)+I\left(X_{1} ; X_{3} \mid X_{2}\right)+\ldots . .+I\left(X_{1} ; X_{n} \mid X_{2}, X_{3}, \ldots X_{n-1}\right)$
By the property of Markov chain, given the present, past and future are independent. So, all terms in the above equation except the first one are 0 .
$\Longrightarrow I\left(X_{1} ; X_{2}, X_{3}, \ldots . X_{n}\right)=I\left(X_{1} ; X_{2}\right)$

