
EE6340 - Information Theory
Problem Set 2 Solution

February 21, 2013

1. a) From Z=X+Y, P(Z = z|X = x) = P(Y = Z − x|X = x)

H(Z|X) =
∑
x

p(x)H(Z|X = x)

=−
∑
x

p(x)
∑
z

p(Z = z|X = x) log2 p(Z = z|X = x)

=−
∑
x

p(x)
∑
z

p(Y = z − x|X = x) log2 p(Y = z − x|X = x)

=
∑
x

p(x)H(Y |X = x)

=H(Y |X)

If X and Y are independent, H(Y |X) = H(Y ).
Also, H(Z|X) ≤ H(Z) (conditioning reduces entropy).
∴ H(Z) ≥ H(Z|X) = H(Y |X) = H(Y )
=⇒ H(Z) ≥ H(Y ). Similarly, we can prove that H(Z) ≥ H(X).

b) Consider the two random variables X and Y such that P(X = 0) = 0.5, P(X = 1) = 0.5 and
X = −Y (dependent). So, H(X) = H(Y ) = 1 bit, while H(Z) = 0 since P(z = 0) = 1.

c) H(Z) ≤ H(X,Y ) ≤ H(X) +H(Y ).
This is because Z is a function of X and Y and I(X;Y ) ≥ 0. Both equalities are satisfied
if Z is a bijection from (X,Y)( =⇒ H(Z) = H(X,Y )) and X and Y are independent( =⇒
H(X,Y ) = H(X) +H(Y )).

2. a) We use algebra of entropies for the proof. Since X1 and X2 have disjoint support sets, define
a function of X,

θ = f(x) =

{
1 whenX = X1

2 whenX = X2

H(X) =H(X, f(X)) = H(θ) +H(X|θ)
=H(θ) + p(θ = 1)H(X|θ = 1) + p(θ = 2)H(X|θ = 2)

=H(α) + αH(X1) + (1− α)H(X2)

where H(α) = −α log2 α− (1− α) log2(1− α)

b) To maximise over α,
dH(X)
dα = 0

=⇒ we get αmax = 2H(X1)

2H(X1)+2H(X2)

Substituting αmax in H(X), we get
Hmax(X) = log(2H(X1) + 2H(X2))

=⇒ H(X) ≤ Hmax(X) = log(2H(X1) + 2H(X2))

∴ 2H(X) ≤ 2H(X1) + 2H(X2)

Thus the effective alphabet sizes add if α is chosen as αmax.

1



c) Since X1 and X2 are Uniformly distributed, H(X1) = logm and H(X2) = log (n−m).
∴ αmax = m

n and Hmax(X) = log(2H(X1) + 2H(X2)) = log(m+ n−m) = log n

3. Let P1 = {p1, p2, ...., pi, ..., pj , ....pm} and
P2 = {p1, p2, ...., pi+pj2 , ...,

pi+pj
2 , ....pm}

H(P2)−H(P1) =− 2(
pi + pj

2
) log2 (

pi + pj
2

) + pi log2 pi + pj log2 pj

=− (pi + pj) log2 (
pi + pj

2
) + pi log2 pi + pj log2 pj

Log-sum inequality =⇒
∑n
i=1 ai log

ai
bi
≥ (

∑
ai)log

∑
ai∑
bi

=⇒ H(P2)−H(P1) ≥ −pi log2 pi − pj log2 pj + pi log2 pi + pj log2 pj = 0

∴ H(P2) ≥ H(P1).

Any transfer of probability that makes the distribution more uniform increases the entropy.

4. Since the run-lengths are functions of X1, X2, ....Xn, we can say H(R) ≤ H(X).
Any one Xi together with the run-lengths determines the entire sequence X1, X2, ....Xn.
Hence,

H(X1, X2, ....Xn) =H(Xi, R)

=H(R) +H(Xi|R)
≤H(R) +H(Xi)

≤ H(R) + 1

5. a) Example for I(X;Y |Z) < I(X;Y ):
X is a binary Random variable and Y=X, Z=Y. In this case,
I(X;Y ) = H(X)−H(X|Y ) = 1− 0 = 1 and
I(X;Y |Z) = H(X|Z)−H(X|Y,Z) = 0− 0 = 0 =⇒ ≥ I(X;Y |Z) < I(X;Y )

b) Example for I(X;Y |Z) > I(X;Y ):
As in Problem 1, consider two binary independent random variables X,Y such that Z=X+Y.
=⇒ I(X;Y ) = 0

But, I(X;Y |Z) = H(X|Z) − H(X|Y,Z) = H(X|Z) − 0 = H(X|Z) = 1
2 =⇒ I(X;Y |Z) >

I(X;Y )

6. By chain rule,

I(X1;X2, X3, ....Xn) = I(X1;X2) + I(X1;X3|X2) + .....+ I(X1;Xn|X2, X3, ...Xn−1)
By the property of Markov chain, given the present,past and future are independent. So, all terms
in the above equation except the first one are 0.

=⇒ I(X1;X2, X3, ....Xn) = I(X1;X2)
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