EE6340 - Information Theory Problem Set 1 Solution

February 21, 2013

1. a) Random variable X = No. of coin tosses till the first head appears. If $\mathbb{P}(\text{head}) = p$ and $\mathbb{P}(tail) = q$,

$$\mathbb{P}(x=n) = pq^{n-1}$$

$$\implies H(X) = -\sum_{n=1}^{\infty} pq^{n-1} \log(pq^{n-1})$$

$$= -\frac{p\log p}{1-q} - \frac{pq\log q}{p^2}$$

$$= H(p)/p$$

For $p = \frac{1}{2}$, H(X) = H(0.5)/0.5 = 2 bits.

- b) Best questions are those which have equal chances of being answered as Yes or as No. $\mathbb{P}(x=1) = \frac{1}{2}$ and $\mathbb{P}(x=2 \text{ or } 3 \text{ or } 4...) = \frac{1}{2}$ (equally probable). So first question is, "Is it 1 or not?'". Similarly, $\mathbb{P}(x=2) = \frac{1}{4}$ and $\mathbb{P}(x=3 \text{ or } 4 \text{ or } 5...) = \frac{1}{4}$ (equally probable) So second question is, "Is it 2 or not?'". The questions proceed as above. $\mathbb{E}(\text{No.of questions}) = \sum_{n=1}^{\infty} n \frac{1}{2^n} = 2 = H(X).$ In general, $\mathbb{E}(\text{No.of questions}) \ge H(X)$ This problem can be interpreted as a source coding problem with 0=no, 1=yes, X=Source, Y=Encoded sequence.
- 2. a) H(X, g(X)) = H(X) + H(g(X)|X) (Chain rule)
 - b) $H(g(X)|X) = \sum_x p(x)H(g(X)|X = x) = \sum_x p(x)0 = 0$ (For a given x,g(x) is fixed). $\implies H(X, g(X)) = H(X)$
 - c) H(X,g(X)) = H(g(X)) + H(X|g(X)) (Chain rule)
 - d) $H(X|g(X)) \ge 0$ with equality if g(.) is one-to-one. (a),(b) and (c) $\implies H(X, g(X)) \ge H(g(X))$
- 3. Let there be 2 y_i 's y_1 and y_2 such that for $x = x_0$, $p(x_0, y_1) > 0$ and $p(x_0, y_2) > 0$. $\implies p(y_1|x_0) > 0$ and $p(y_2|x_0) > 0$, neither of them being 0 or 1.

$$H(Y|X) = -\sum_{x,y} p(x,y) \log_2 p(y|x)$$

$$\geq -p(x_0)p(y_1|x_0) \log_2 p(y_1|x_0) - p(x_0)p(y_2|x_0) \log_2 p(y_2|x_0)$$

$$> 0$$

since $-t \log t > 0$ for 0 < t < 1. So, H(Y|X) = 0 iff Y is a function of X. Else H(Y|X) > 0.

4. X=Outcome of world series

Y=No.of games played ϵ {4,5,6,7} For Y = 4, there are 2 outcomes {AAAA,BBBB} each with probability $\frac{1}{2^4}$. For Y = 5,there are 2 × $\binom{4}{3}$ = 8 outcomes each with probability $\frac{1}{2^5}$. For Y = 6,there are 2 × $\binom{5}{3}$ = 20 outcomes each with probability $\frac{1}{2^6}$. for Y = 7,there are 2 × $\binom{6}{3}$ = 40 outcomes each with probability $\frac{1}{2^7}$. Thus,

$$\mathbb{P}(Y=4) = \frac{1}{8}$$
$$\mathbb{P}(Y=5) = \frac{1}{4}$$
$$\mathbb{P}(Y=6) = \frac{5}{16}$$
$$\mathbb{P}(Y=7) = \frac{5}{16}$$

 $\begin{array}{l} \mathbf{X}{=}\{\mathbf{A}\mathbf{A}\mathbf{A}\mathbf{A}, \mathbf{B}\mathbf{B}\mathbf{B}\mathbf{B}, \dots, \mathbf{B}\mathbf{A}\mathbf{B}\mathbf{A}\mathbf{B}\mathbf{A}\mathbf{B}, \dots, \mathbf{B}\mathbf{B}\mathbf{B}\mathbf{A}\mathbf{A}\mathbf{A}\mathbf{A}\}\\ \mathbb{P}(\mathbf{B}\mathbf{A}\mathbf{A}\mathbf{A}\mathbf{A}){=}\frac{1}{2^5}, \ \mathbb{P}(\mathbf{B}\mathbf{A}\mathbf{B}\mathbf{A}\mathbf{B}\mathbf{A}\mathbf{B}){=}\frac{1}{2^7}, \dots \end{array}$

There are 2 sequences of length 4, 8 sequences of length 5, 20 sequences of length 6 and 40 sequences of length 7.

$$\begin{split} H(X) &= -\sum_{x} p(x) \log_2 p(x) \\ &= 2\left(\frac{1}{16}\right) \log_2 16 + 8\left(\frac{1}{32}\right) \log_2 32 + 20\left(\frac{1}{64}\right) \log_2 64 + 40\left(\frac{1}{128}\right) \log_2 128 \\ &= 5.8125 \\ H(Y) &= -\sum_{y} p(y) \log_2 p(y) \\ &= \frac{1}{8} \log_2 8 + \frac{1}{4} \log_2 4 + \frac{5}{16} \log_2 \frac{16}{5} + \frac{5}{16} \log_2 \frac{16}{5} \\ &= 1.924 \end{split}$$

Y = length(X), i.e, Y is a deterministic function of X.

$$H(Y|X) = 0$$

$$H(X) + H(Y|X) = H(X,Y) = H(Y) + H(X|Y)$$

$$\implies H(X|Y) = H(X) - H(Y)$$

$$= 3.889$$

5. a)
$$H(X) = \frac{2}{3}\log_2 \frac{3}{2} + \frac{1}{3}\log_2 3 = 0.918 = H(Y)$$

b) $H(X|Y) = \frac{1}{3}H(X|Y=0) + \frac{2}{3}H(X|Y=1) = 0.667 = H(Y|X)$
c) $H(X,Y) = H(X) + H(Y|X) = 1.585$
d) $H(Y) - H(Y|X) = 0.251$
e) $I(X;Y) = H(Y) - H(Y|X) = 0.251$

6. Identically distributed $\implies H(X_1) = H(X_2)$

a)
$$\rho = 1 - \frac{H(X_2|X_1)}{H(X_1)} = \frac{H(X_1) - H(X_2|X_1)}{H(X_1)} = \frac{H(X_2) - H(X_2|X_1)}{H(X_1)} = \frac{I(X_1;X_2)}{H(X_1)}$$

- b) $I(X_1; X_2) = H(X_1) H(X_1|X_2)$ But $H(X_1|X_2) \ge 0 \implies I(X_1; X_2) \le H(X_1) \implies \rho \le 1$ $I(X_1; X_2) \ge 0 \implies \rho \ge 0$ $\therefore 0 \le \rho \le 1$
- c) X_1, X_2 are independent. So $H(X_1|X_2) = H(X_1) \implies I(X_1; X_2) = 0$ Thus $\rho = 0$ when X_1 and X_2 are i.i.d
- d) $H(X_2|X_1) = 0$ when X_2 is a function of $X_1 \implies \rho = 1$.