EE6340 - Information Theory
 Problem Set 1 Solution

February 21, 2013

1. a) Random variable $X=$ No. of coin tosses till the first head appears. If $\mathbb{P}($ head $)=p$ and $\mathbb{P}($ tail $)=q$,

$$
\begin{aligned}
\mathbb{P}(x=n) & =p q^{n-1} \\
\Longrightarrow H(X) & =-\sum_{n=1}^{\infty} p q^{n-1} \log \left(p q^{n-1}\right) \\
& =-\frac{p \log p}{1-q}-\frac{p q \log q}{p^{2}} \\
& =H(p) / p
\end{aligned}
$$

For $p=\frac{1}{2}, H(X)=H(0.5) / 0.5=2$ bits.
b) Best questions are those which have equal chances of being answered as Yes or as No.
$\mathbb{P}(x=1)=\frac{1}{2}$ and $\mathbb{P}(x=2$ or 3 or $4 \ldots)=\frac{1}{2}$ (equally probable).
So first question is, "Is it 1 or not?'".
Similarly, $\mathbb{P}(x=2)=\frac{1}{4}$ and $\mathbb{P}(x=3$ or 4 or $5 \ldots)=\frac{1}{4}$ (equally probable)
So second question is, "Is it 2 or not?'".
The questions proceed as above.
$\mathbb{E}($ No.of questions $)=\sum_{n=1}^{\infty} n \frac{1}{2^{n}}=2=H(X)$.
In general, $\mathbb{E}($ No.of questions) $\geq H(X)$
This problem can be interpreted as a source coding problem with $0=$ no, $1=$ yes, $\mathrm{X}=$ Source, $Y=$ Encoded sequence.
2. a) $H(X, g(X))=H(X)+H(g(X) \mid X)$ (Chain rule)
b) $H(g(X) \mid X)=\sum_{x} p(x) H(g(X) \mid X=x)=\sum_{x} p(x) 0=0$ (For a given $\mathrm{x}, \mathrm{g}(\mathrm{x})$ is fixed).
$\Longrightarrow H(X, g(X))=H(X)$
c) $H(X, g(X))=H(g(X))+H(X \mid g(X))$ (Chain rule)
d) $H(X \mid g(X)) \geq 0$ with equality if $g($.$) is one-to-one.$
$(a),(b)$ and $(c) \Longrightarrow H(X, g(X)) \geq H(g(X)$
3. Let there be $2 y_{i}$'s y_{1} and y_{2} such that for $x=x_{0}, p\left(x_{0}, y_{1}\right)>0$ and $p\left(x_{0}, y_{2}\right)>0$. $\Longrightarrow p\left(y_{1} \mid x_{0}\right)>0$ and $p\left(y_{2} \mid x_{0}\right)>0$, neither of them being 0 or 1 .

$$
\begin{aligned}
H(Y \mid X) & =-\sum_{x, y} p(x, y) \log _{2} p(y \mid x) \\
& \geq-p\left(x_{0}\right) p\left(y_{1} \mid x_{0}\right) \log _{2} p\left(y_{1} \mid x_{0}\right)-p\left(x_{0}\right) p\left(y_{2} \mid x_{0}\right) \log _{2} p\left(y_{2} \mid x_{0}\right) \\
& >0
\end{aligned}
$$

since $-t \log t>0$ for $0<t<1$. So, $\mathrm{H}(\mathrm{Y} \mid \mathrm{X})=0$ iff Y is a function of X . Else $\mathrm{H}(\mathrm{Y} \mid \mathrm{X})>0$.
4. $\mathrm{X}=$ Outcome of world series
$\mathrm{Y}=$ No.of games played $\epsilon\{4,5,6,7\}$
For $Y=4$, there are 2 outcomes $\{\mathrm{AAAA}, \mathrm{BBBB}\}$ each with probability $\frac{1}{2^{4}}$.
For $Y=5$, there are $2 \times\binom{ 4}{3}=8$ outcomes each with probability $\frac{1}{2^{5}}$.
For $Y=6$, there are $2 \times\binom{ 5}{3}=20$ outcomes each with probability $\frac{1}{2^{6}}$.
for $Y=7$, there are $2 \times\binom{ 6}{3}=40$ outcomes each with probability $\frac{1}{2^{7}}$.
Thus,

$$
\begin{aligned}
& \mathbb{P}(Y=4)=\frac{1}{8} \\
& \mathbb{P}(Y=5)=\frac{1}{4} \\
& \mathbb{P}(Y=6)=\frac{5}{16} \\
& \mathbb{P}(Y=7)=\frac{5}{16}
\end{aligned}
$$

$\mathrm{X}=\{\mathrm{AAAA}, \mathrm{BBBB}, \ldots, \mathrm{BABABAB}, \ldots . \mathrm{BBBAAAA}\}$ $\mathbb{P}(\mathrm{BAAAA})=\frac{1}{2^{5}}, \mathbb{P}(\mathrm{BABABAB})=\frac{1}{2^{7}}, \ldots$
There are 2 sequences of length 4,8 sequences of length 5,20 sequences of length 6 and 40 sequences of length 7 .

$$
\begin{aligned}
H(X) & =-\sum_{x} p(x) \log _{2} p(x) \\
& =2\left(\frac{1}{16}\right) \log _{2} 16+8\left(\frac{1}{32}\right) \log _{2} 32+20\left(\frac{1}{64}\right) \log _{2} 64+40\left(\frac{1}{128}\right) \log _{2} 128 \\
& =5.8125 \\
H(Y) & =-\sum_{y} p(y) \log _{2} p(y) \\
& =\frac{1}{8} \log _{2} 8+\frac{1}{4} \log _{2} 4+\frac{5}{16} \log _{2} \frac{16}{5}+\frac{5}{16} \log _{2} \frac{16}{5} \\
& =1.924
\end{aligned}
$$

$Y=\operatorname{length}(X)$, i.e, Y is a deterministic function of X.

$$
\begin{aligned}
H(Y \mid X) & =0 \\
H(X)+H(Y \mid X) & =H(X, Y)=H(Y)+H(X \mid Y) \\
\Longrightarrow H(X \mid Y) & =H(X)-H(Y) \\
& =3.889
\end{aligned}
$$

5. a) $H(X)=\frac{2}{3} \log _{2} \frac{3}{2}+\frac{1}{3} \log _{2} 3=0.918=H(Y)$
b) $H(X \mid Y)=\frac{1}{3} H(X \mid Y=0)+\frac{2}{3} H(X \mid Y=1)=0.667=H(Y \mid X)$
c) $H(X, Y)=H(X)+H(Y \mid X)=1.585$
d) $H(Y)-H(Y \mid X)=0.251$
e) $I(X ; Y)=H(Y)-H(Y \mid X)=0.251$
f)
6. Identically distributed $\Longrightarrow H\left(X_{1}\right)=H\left(X_{2}\right)$
a) $\rho=1-\frac{H\left(X_{2} \mid X_{1}\right)}{H\left(X_{1}\right)}=\frac{H\left(X_{1}\right)-H\left(X_{2} \mid X_{1}\right)}{H\left(X_{1}\right)}=\frac{H\left(X_{2}\right)-H\left(X_{2} \mid X_{1}\right)}{H\left(X_{1}\right)}=\frac{I\left(X_{1} ; X_{2}\right)}{H\left(X_{1}\right)}$

b) $I\left(X_{1} ; X_{2}\right)=H\left(X_{1}\right)-H\left(X_{1} \mid X_{2}\right)$

But $H\left(X_{1} \mid X_{2}\right) \geq 0 \Longrightarrow I\left(X_{1} ; X_{2}\right) \leq H\left(X_{1}\right) \Longrightarrow \rho \leq 1$ $I\left(X_{1} ; X_{2}\right) \geq 0 \Longrightarrow \rho \geq 0$ $\therefore 0 \leq \rho \leq 1$
c) X_{1}, X_{2} are independent.So $H\left(X_{1} \mid X_{2}\right)=H\left(X_{1}\right) \Longrightarrow I\left(X_{1} ; X_{2}\right)=0$ Thus $\rho=0$ when X_{1} and X_{2} are i.i.d
d) $H\left(X_{2} \mid X_{1}\right)=0$ when X_{2} is a function of $X_{1} \Longrightarrow \rho=1$.

