EE6340: Information Theory Problem Set 7

1. Channels with memory have higher capacity. Consider a binary symmetric channel with $Y_{i}=X_{i} \oplus Z_{i}$, where \oplus is $\bmod 2$ addition, and $X_{i}, Y_{i} \in\{0,1\}$.
Suppose that $\left\{Z_{i}\right\}$ has constant marginal probabilities $\operatorname{Pr}\left\{Z_{i}=1\right\}=p=1-\operatorname{Pr}\left\{Z_{i}=0\right\}$, but that $Z_{1}, Z_{2}, \ldots . . Z_{n}$ are not necessarily independent. Assume that Z^{n} is independent of the input X^{n}. Let $C=1-H(p, 1-p)$. Show that

$$
\max _{p\left(x_{1}, x_{2}, \ldots x_{n}\right)} I\left(X_{1}, X_{2}, \ldots, X_{n} ; Y_{1}, Y_{2}, \ldots, Y_{n}\right) \geq n C .
$$

2. Time-varying channels. Consider a time-varying discrete memoryless channel.

Let $Y_{1}, Y_{2}, \ldots Y_{n}$ be conditionally independent given $X_{1}, X_{2}, \ldots X_{n}$, with conditional distribution given by $p(\mathbf{y} \mid \mathbf{x})=\prod_{\mathbf{i}=1}^{\mathrm{n}} \mathbf{p}_{\mathbf{i}}\left(\mathbf{y}_{\mathbf{i}} \mid \mathbf{x}_{\mathbf{i}}\right)$. Let $\mathbf{X}=\left(\mathbf{X}_{\mathbf{1}}, \mathbf{X}_{\mathbf{2}}, \ldots \mathbf{X}_{\mathbf{n}}\right), \mathbf{Y}=\left(\mathbf{Y}_{\mathbf{1}}, \mathbf{Y}_{\mathbf{2}}, \ldots, \mathbf{Y}_{\mathbf{n}}\right)$. Find $\max _{p(x)} I(\mathbf{X} ; \mathbf{Y})$.
3. Can signal alternatives lower capacity? Show that adding a row to a channel transition matrix does not decrease capacity.
4. A channel with two independent looks at Y. Let Y_{1} and Y_{2} be conditionally independent and identically distributed given X.
(a) Show that $I\left(X ; Y_{1}, Y_{2}\right)=2 I\left(X ; Y_{1}\right)-I\left(Y_{1} ; Y_{2}\right)$.
(b) Conclude that the capacity of the channel (1) is less than twice the capacity of the channel (2).

(1)

(2)

