EE 511 Solutions to Problem Set 6

1. The power spectral density of the output noise process is equal to $N_{0} / 2$ for $|f| \leq B$ and equal to 0 otherwise. Therefore, the variance of the output noise process (zero-mean) is the area under the PSD $=(2 B)\left(N_{0} / 2\right)=N_{0} B$.
2. a) $m_{Y}(t)=E\left[Y_{t}\right]=E\left[X_{t+D}\right]-E\left[X_{t}\right]=m(t+D)-m t=m D$.

$$
\begin{aligned}
R_{Y}(t, s) & =E\left[\left(X_{t+D}-X_{t}\right)\left(X_{s+D}-X_{s}\right)\right] \\
& =R_{X}(t+D, s+D)-R_{X}(t+D, s)-R_{X}(t, s+D)+R_{X}(t, s) \\
& =\sigma^{2}[\min (t+D, s+D)-\min (t+D, s)-\min (t, s+D)+\min (t, s)]+m^{2} D^{2}
\end{aligned}
$$

For $0 \leq t-s \leq D, R_{Y}(t, s)=m^{2} D^{2}+\sigma^{2}(s+D-s-t+s)=m^{2} D^{2}+\sigma^{2}(s-t)+\sigma^{2} D$. For $t-s \geq D, R_{Y}(t, s)=m^{2} D^{2}+\sigma^{2}(s+D-s-(s+D)+s)=m^{2} D^{2}$.
For $-D \leq t-s \leq 0, R_{Y}(t, s)=m^{2} D^{2}+\sigma^{2}(t+D-s-t+t)=m^{2} D^{2}+\sigma^{2}(t-s)+\sigma^{2} D$.
For $t-s \leq-D, R_{Y}(t, s)=m^{2} D^{2}+\sigma^{2}(t+D-(t+D)-t+t)=m^{2} D^{2}$.
Therefore, defining $\tau=t-s$ we have

$$
R_{Y}(\tau)= \begin{cases}m^{2} D^{2}+\sigma^{2}(D-|\tau|) & |\tau| \leq D \\ m^{2} D^{2} & |\tau|>D\end{cases}
$$

b) Since Y_{t} is W.S.S. (from part (a)) and Y_{t} is a Gaussian random process, Y_{t} is also strictly stationary.

$$
S_{Y}(f)=m^{2} D^{2} \delta(f)+\sigma^{2} D^{2} \operatorname{sinc}^{2}(f D)
$$

3. a) $E\left[Y_{t}\right]=E\left[X_{t}^{2}\right]=R_{X}(0)$.
b)

$$
\begin{aligned}
C_{y}(t, t+\tau) & =E\left[\left(Y_{t}-R_{X}(0)\right)\left(Y_{t+\tau}-R_{X}(0)\right)\right] \\
& =R_{Y}(t, t+\tau)-R_{X}^{2}(0) \\
& =E\left[X_{t}^{2} X_{t+\tau}^{2}\right]-R_{X}^{2}(0) \\
& =R_{X}^{2}(0)+2 R_{X}^{2}(\tau)-R_{X}^{2}(0) \\
& =2 R_{X}^{2}(\tau)
\end{aligned}
$$

In the above solution, $E\left[X_{t}^{2} X_{t+\tau}^{2}\right]$ can be shown to be $R_{X}^{2}(0)+2 R_{X}^{2}(\tau)$ in the following manner.
(i) The joint characteristic function of X_{t} and $X_{t+\tau}$ is

$$
\phi_{X_{t}, X_{t+\tau}}\left(s_{1}, s_{2}\right)=\exp \left\{\frac{1}{2}\left[\begin{array}{ll}
s_{1} & s_{2}
\end{array}\right] C\left[\begin{array}{l}
s_{1} \\
s_{2}
\end{array}\right]\right\}
$$

since X_{t} and $X_{t+\tau}$ are jointly Gaussian random variables with zero-mean and covariance matrix C given by

$$
C=\left[\begin{array}{ll}
R_{X}(0) & R_{X}(\tau) \\
R_{X}(\tau) & R_{X}(0)
\end{array}\right]
$$

Therefore, we have

$$
\phi_{X_{t}, X_{t+\tau}}\left(s_{1}, s_{2}\right)=\exp \left\{R_{X}(0) s_{1}^{2}+2 R_{X}(\tau) s_{1} s_{2}+R_{X}(0) s_{2}^{2}\right\}
$$

(ii) Then,

$$
E\left[X_{t}^{2} X_{t+\tau}^{2}\right]=\left.\frac{\partial^{4}}{\partial^{2} s_{1} \partial^{2} s_{2}} \phi_{X_{t}, X_{t+\tau}}\left(s_{1}, s_{2}\right)\right|_{s_{1}=0, s_{2}=0}=R_{X}^{2}(0)+2 R_{X}^{2}(\tau) .
$$

4. a) Y_{t} is also a zero-mean W.S.S. Gaussian random process. We have

$$
|H(f)|^{2}=\operatorname{sinc}^{2}(f T) .
$$

Therefore, we have $S_{Y}(f)=S_{X}(f)|H(f)|^{2}=S_{X}(f) \operatorname{sinc}^{2}(f T)$.

$$
E\left[Y^{2}\right]=R_{Y}(0)=\int_{-\infty}^{\infty} S_{X}(f) \operatorname{sinc}^{2}(f T) d f
$$

b) Y is a Gaussian random variable with zero-mean and variance given by

$$
\int_{-\infty}^{\infty} S_{X}(f) \operatorname{sinc}^{2}(f T) d f
$$

5. (a) $S_{Z}(f)=S_{X}(f)|H(f)|^{2}$ and $S_{Y}(f)=S_{X}(f)|H(f)|^{2}|E(f)|^{2}$.
(b) $S_{X Z}(f)=S_{X}(f) H^{*}(f)$,
$S_{Z Y}(f)=S_{Z}(f) E^{*}(f)=S_{X}(f)|H(f)|^{2} E^{*}(f)$, and $S_{X Y}(f)=S_{X}(f) H^{*}(f) E^{*}(f)$.
(c) $H(f)=E(f)=1 /(1+j 2 \pi f)$. Therefore, we have

$$
\begin{gathered}
S_{Z}(f)=\frac{S_{X}(f)}{1+4 \pi^{2} f^{2}}, \\
S_{Y}(f)=\frac{S_{X}(f)}{\left(1+4 \pi^{2} f^{2}\right)^{2}}, \\
S_{X Z}(f)=\frac{S_{X}(f)}{1-j 2 \pi f}, \\
S_{Z Y}(f)=\frac{S_{X}(f)}{\left(1+4 \pi^{2} f^{2}\right)(1-j 2 \pi f)}, \quad \text { and } \\
S_{X Z}(f)=\frac{S_{X}(f)}{(1-j 2 \pi f)^{2}} .
\end{gathered}
$$

6.

$$
\begin{aligned}
R_{Y Z}\left(t_{1}, t_{2}\right) & =E\left[Y_{t_{1}} Z_{t_{2}}\right] \\
& =E\left[\int_{-\infty}^{\infty} h_{1}\left(\tau_{1}\right) X_{t_{1}-\tau_{1}} d \tau_{1} \int_{-\infty}^{\infty} h_{2}\left(\tau_{2}\right) X_{t_{2}-\tau_{2}} d \tau_{2}\right] \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h_{1}\left(\tau_{1}\right) h_{2}\left(\tau_{2}\right) E\left[X_{t_{1}-\tau_{1}} X_{t_{2}-\tau_{2}}\right] d \tau_{1} d \tau_{2} \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h_{1}\left(\tau_{1}\right) h_{2}\left(\tau_{2}\right) R_{X}\left(t_{1}-t_{2}-\tau_{1}+\tau_{2}\right) d \tau_{1} d \tau_{2} \\
& =\int_{-\infty}^{\infty} h_{1}\left(\tau_{1}\right)\left[\int_{-\infty}^{\infty} h_{2}\left(\tau_{2}\right) R_{X}\left(t_{1}-t_{2}-\tau_{1}+\tau_{2}\right) d \tau_{2}\right] d \tau_{1}
\end{aligned}
$$

From the above result, we see that $R_{Y Z}(t, s)$ is a function of $\tau=t_{1}-t_{2}$ and is the convolution of $R_{X}(\tau), h_{1}(\tau)$ and $h_{2}(-\tau)$. Therefore, we have

$$
S_{Y Z}(f)=S_{X}(f) H_{1}(f) H_{2}{ }^{*}(f)
$$

Y_{t} and Z_{t} are Gaussian random processes. They are independent, if they are uncorrelated, i.e., $R_{Y Z}\left(t_{1}-t_{2}\right)=m_{Y}\left(t_{1}\right) m_{Z}\left(t_{2}\right)=m_{Y} m_{Z}$. We have

$$
m_{Y}=m_{X} \int_{-\infty}^{\infty} h_{1}(\tau) d \tau=m_{X} H_{1}(0)=0
$$

and

$$
m_{Z}=m_{X} H_{2}(0)=0
$$

Therefore, we need $R_{Y Z}\left(t_{1}-t_{2}\right)=m_{Y}\left(t_{1}\right) m_{Z}\left(t_{2}\right)=m_{Y} m_{Z}=0$. Equivalently, we need

$$
S_{X}(f) H_{1}(f) H_{2}^{*}(f)=0,
$$

i.e., we need the frequency response of the filters $H_{1}(f)$ and $H_{2}(f)$ to be non-overlapping in the region where $S_{X}(f)$ is non-zero.
7. (a) $E\left[Y_{t}^{2}\right]=R_{Y}(0)=\int_{-\infty}^{\infty} S_{Y}(f) d f=\int_{-\infty}^{\infty} S_{X}(f)\left|H_{1}(f)\right|^{2} d f=2$.

$$
E\left[Z_{t}^{2}\right]=R_{Z}(0)=\int_{-\infty}^{\jmath_{-}^{\infty}} S_{Z}(f) d f=\int_{-\infty}^{\infty} S_{X}(f)\left|H_{2}(f)\right|^{2} d f=3.5 .
$$

(b)

$$
S_{Y Z}(f)=S_{X}(f) H_{1}(f) H_{2}^{*}(f)= \begin{cases}\frac{1}{W} & |f| \leq W \\ 0 & \text { else }\end{cases}
$$

Therefore, we have $R_{Y Z}(\tau)=2 \operatorname{sinc}(2 W \tau)$.
(c) Since X_{t} is a Gaussian process and Y_{t} and Z_{t} are obatined from X_{t} using linear filters, $Y_{t_{1}}$ and $Z_{t_{2}}$ are jointly Gaussian. The elements of the mean vector and covariance matrix are as follows:

$$
\begin{gathered}
E\left[Y_{t_{1}}\right]=E\left[Z_{t_{2}}\right]=0 \\
E\left[Y_{t_{1}} Z_{t_{2}}\right]=R_{Y Z}\left(\frac{1}{2 W}\right)=0 . \\
E\left[Y_{t_{1}}^{2}\right]=2 \quad \text { and } \quad E\left[Z_{t_{2}}^{2}\right]=3.5
\end{gathered}
$$

8. $Y_{t}=\frac{1}{c} X_{c^{2} t}$. Since X_{t} is a Gaussian process, Y_{t} is also Gaussian.

$$
\begin{aligned}
E\left[Y_{t}\right] & =\frac{1}{c} E\left[X_{c^{2} t}\right]=\frac{1}{c} m c^{2} t=m c t . \\
R_{Y}(t, s) & =E\left[Y_{t} Y_{s}\right] \\
& =E\left[\frac{1}{c} X_{c^{2} t} \frac{1}{c} X_{c^{2} s}\right] \\
& =\frac{1}{c^{2}} R_{X}\left(c^{2} t, c^{2} s\right) \\
& =\frac{1}{c^{2}}\left[c^{4} m^{2} t s+\sigma^{2} \min \left(c^{2} t, c^{2} s\right)\right] \\
& =c^{2} m^{2} t s+\sigma^{2} \min (t, s) .
\end{aligned}
$$

Therefore, Y_{t} is also a Wiener process (with parameters $m c$ and σ^{2}).

