
EE 511 Solutions to Problem Set 4

1. (i) φX(s) = es2/2. (ii) We have

P [X ≥ a] = e−asφX(s) for all s > 0.

This upper bound should be minimized with respect to s to obtain the Chernoff bound.

e−asφX(s) = e−ases2/2

Setting the derivative with respect to s to 0, we get

se−ases2/2 + (−a)e−ases2/2 = 0

i.e., s = a. The second derivative at s = a can be shown to be positive. Therefore, the
Chernoff bound is given by

P [X ≥ a] ≤ e−a2/2

(iii) From the Chebyshev inequality, we get

P [|X| ≥ a] ≤ 1

a2
.

Since fX(x) is symmetric, we get

P [X ≥ a] ≤ 1

2a2
.

2. E[Z] = E[X] + aE[Y ] = 0.

E[X|Y = y] = E[Z|Y = y] − aE[Y |Y = y]
= E[Z] − ay

= −ay.

3.

E[X] =

∫ 100

0
xfX(x)dx =

∫ 100

0

x

100
dx = 50.

Given that X ≥ 65, X is uniformly distributed in [65, 100]. Therefore, we have

E[X|X ≥ 65] =

∫ 100

65
xfX(x|X ≥ 65)dx =

∫ 100

65

x

35
dx = 82.5.

4. E[X] =
∞
∑

k=0

ke−aak

k!
. We know

∞
∑

k=0

e−aak

k!
= 1. (1)

Differentiating with respect to a, we get

∞
∑

k=0

ke−aak−1

k!
− e−a

∞
∑

k=0

ak

k!
= 0.
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1

a
E[X] = e−a

∞
∑

k=0

ak

k!
= 1.

Therefore, we have E[X] = a.

Differentiating (1) twice with respect to a, we get

∞
∑

k=0

k(k − 1)e−aak−2

k!
−

∞
∑

k=0

ke−aak−1

k!
−

∞
∑

k=0

ke−aak−1

k!
+

∞
∑

k=0

e−aak

k!
= 0

1

a2

∞
∑

k=0

k2e−aak

k!
− 1

a2

∞
∑

k=0

ke−aak

k!
− 2

a

∞
∑

k=0

ke−aak

k!
+ 1 = 0

1

a2
E[X2] − 1

a2
a − 2

a
a + 1 = 0.

Therefore, we have E[X2] = a2 + a ⇒ V ar(X) = a.

5.

E[X] =

∫ ∞

0
xλe−λxdx =

∫ ∞

0
xd(−e−λx) = −xe−λx

∣

∣

∣

∞

0
+

∫ ∞

0
e−λxdx = 0 +

e−λx

−λ

∣

∣

∣

∣

∣

∞

0

=
1

λ
.

fX(x|X ≥ 2) =

{

0 x < 2
fX(x)

P [X≥2] x ≥ 2

P [X ≥ 2] =

∫ ∞

2
λe−λxdx =

e−λx

−λ

∣

∣

∣

∣

∣

∞

2

= e−2λ.

Therefore, we have

fX(x|X ≥ 2) =

{

0 x < 2

λe−λ(x−2) x ≥ 2

E[X|X ≥ 2] =

∫ ∞

2
xλe−λ(x−2)dx = −xe−λ(x−2)

∣

∣

∣

∞

2
+

∫ ∞

2
e−λ(x−2)dx = 2+

e−λ(x−2)

−λ

∣

∣

∣

∣

∣

∞

2

= 2+
1

λ
.

6. (i) MSE(c) = E[(Y − c)2] =
∫∞
−∞(y − c)2fY (y)dy. Setting the derivative of MSE(c) with

respect to c to be 0, we get

dMSE(c)

dc
= −

∫ ∞

−∞
2(y − c)fY (y)dy = 0

i.e.,

c =

∫ ∞

−∞
yfY (y)dy = E[Y ].

Also,
d2MSE(c)

dc2
=

∫ ∞

−∞
2fY (y)dy = 2 > 0.
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(ii) E[(Y − g(X))2] = E[E[(Y − g(X))2|X]], i.e.,

E[(Y − g(X))2] =

∫ ∞

∞
E[(Y − g(X))2|X = x]fX(x)dx.

Since fX(x) ≥ 0, we minimize E[(Y − g(X))2] by minimizing E[(Y − g(X))2|X = x] for each
x.

E[(Y − g(X))2|X = x] =

∫ ∞

∞
(y − g(x))2fY (y|X = x)dy.

As in part (i), the best choice for g(x) is

g(x) =

∫ ∞

−∞
yfY (y|X = x)dy = E[Y |X = x].

7. Since X is a zero-mean Gaussian with variance σ2

φx(s) = e
s
2

σ
2

2 =
∞
∑

k=0

1

k!

(

s2σ2

2

)k

.

E[Xn] =
∂nφX(s)

∂sn

∣

∣

∣

∣

s=0
.

Therefore, E[Xn] = 0 when n is odd. When n is even and n = 2m, we have

∂nφX(s)

∂sn

∣

∣

∣

∣

s=0
=

(2m)!

m!2m
σ2m = (1.3. · · · (2m − 3).(2m − 1)) σ2m.

8. a)

fX(x) =
1

(2π)3/2|C|1/2
exp

{

−1

2
xT C−1x

}

where |C| = 36 and

C−1 =
1

36







30 −18 0
−18 18 0

0 0 6






.

b) E[Y ] = 0 and

σ2
Y =

[

1 2 −1
]







3 3 0
3 5 0
0 0 6













1
2

−1






= 41.

Y is Gaussian with zero-mean and variance 41.

c) E[Z] = 0 and

CZ =







5 −3 −1
−1 3 −1

1 0 1













3 3 0
3 5 0
0 0 6













5 −1 −1
−3 3 0
−1 −1 0






=







36 0 0
0 36 0
0 0 9







Z is a 3-dimensional zero-mean Gaussian random vector with covariance matrix CZ .
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9. (a) X2 is a zero-mean Gaussian with variance 2.

fX2
(x2) =

1√
4π

exp

{

−x2
2

4

}

.

(b) fX1
(x1|X2 = x2) =

fX1,X2
(x1, x2)

fX2
(x2)

.

det (C) = 2 − r2 and C−1 =
1

2 − r2

[

2 −r

−r 1

]

.

Therefore, we have

fX1
(x1|X2 = x2) =

1
2π

√
2−r2

exp
{

− 1
2(2−r2)

(2x2
1 − 2rx1x2 + x2

2)
}

1√
4π

exp
{

−x2

2

4

}

=

√
2√

2π
√

2 − r2
exp







−x2
1 − rx1x2 +

r2x2

2

4

2 − r2







=

√
2√

2π
√

2 − r2
exp

{

−
(

x1 − rx2

2

)2

2 − r2

}

Given X2 = x2, X1 is Gaussian with mean rx2

2 and variance 1 − r2

2 .

10. (a)

φX(s) = exp

{

sT m +
1

2
sT Cs

}

.

φX1
(s1) = φX(s)

∣

∣

s2=0
= exp

{

m1s1 +
σ2

2s
2
1

2

}

Therefore, X1 is Gaussian. Similarly, X2 can be shown to be Gaussian.

(b)

fX1
(x1) =

∫ ∞

−∞
fX1,X2

(x1, x2)dx2

=
1√
2π

exp

{

−x2
1

2

}

∫ ∞

−∞

1√
2π

exp

{

−x2
2

2

}

dx2

+
x1√
2π

exp

{

−x2
1 − 2

2

}

∫ ∞

−∞

x2√
2π

exp

{

−x2
2

2

}

dx2

=
1√
2π

exp

{

−x2
1

2

}

+ 0

=
1√
2π

exp

{

−x2
1

2

}
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Similarly, we can show that

fX2
(x2) =

1√
2π

exp

{

−x2
2

2

}

.

11. E[Y ] = AE[X] + b. Let CX and CY denote the covariance matrices of X and Y respectively.

CY = E[(Y − E[Y ])(Y − E[Y ])T ]
= E[(A(X − E[X]))(A(X − E[X]))T ]
= ACXAT

12. X is proper if all the elements of E[(X − E[X])(X − E[X])T ] are zero.

X − E[X] = (Xr − E[Xr]) + j(X i − E[X i])

E[(X − E[X])(X − E[X])T ] = E[(Xr − E[Xr])(Xr − E[Xr])
T ]

+jE[(Xr − E[Xr])(X i − E[X i])
T ]

+jE[(X i − E[X i])(Xr − E[Xr])
T ]

−E[(X i − E[X i])(X i − E[X i])
T ]

Therefore, we need

E[(Xr − E[Xr])(Xr − E[Xr])
T ] = E[(X i − E[X i])(X i − E[X i])

T ],

and
E[(Xr − E[Xr])(X i − E[X i])

T ] = −E[(X i − E[X i])(Xr − E[Xr])
T ].

Since E[(Xr − E[Xr])(X i − E[X i])
T ] = E[(X i − E[X i])(Xr − E[Xr])

T ], we have

E[(Xr − E[Xr])(X i − E[X i])
T ] = −E[(Xr − E[Xr])(X i − E[X i])

T ]T .

This means that the diagonal elements of E[(Xr−E[Xr])(X i−E[X i])
T ] are zero, i.e., the real

and imaginary part of each component in X are uncorrelated. Thus, the required conditions
are:

(i) The vectors Xr and X i should have the same covariance matrix.

(ii) The vectors Xr and X i should have a cross-covariance matrix that is skew-symmetric.

13.

sT m =
n
∑

i=1

simi and sT Cs =
n
∑

i=1

si





n
∑

j=1

Cijsj





E[Xk] =
∂φX(s)

∂sk

∣

∣

∣

∣

s=0

∂φX(s)

∂sk
= φX(s)



mk + Ckksk +
1

2

n
∑

j=1,j 6=k

(Ckj + Cjk)sj





Therefore, we have
E[Xk] = mk and E[X] = m.
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R = E[XXT ] = C + mmT .

Rkl =
∂

∂sk

∂

∂sl
φX(s)

∣

∣

∣

∣

s=0

Rkk =











φX(s)






Ckk +



mk + Ckksk +
1

2

n
∑

j=1,j 6=k

(Ckj + Cjk)sj





2
















s=0

= Ckk + m2
k

Rkl =







φX(s)





1

2
(Ckl + Clk) +



mk + Ckksk +
1

2

n
∑

j=1,j 6=k

(Ckj + Cjk)sj







ml + Cllsl +
1

2

n
∑

j=1,j 6=l

(Clj + Cjl)sj















s=0

=
1

2
(Ckl + Clk) + mkml

= Ckl + mkml

Therefore, the covariance matrix of X is C.

14. The covariance matrix CY of [Y1 Y2]
T is

CY =

[

1 1
1 −1

] [

1 ρ

ρ 1

] [

1 1
1 −1

]

.

CY =

[

2(1 + ρ) 0
0 2(1 − ρ)

]

.

Therefore, Y1 and Y2 are uncorrelated. Since they are also jointly Gaussian, they are inde-
pendent.

15. The covariance matrix CY of [Y1 Y2]
T is

CY =

[

1
σ1

1
σ2

1
σ1

− 1
σ2

] [

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

] [

1
σ1

1
σ2

1
σ1

− 1
σ2

]

.

CY =

[

2(1 + ρ) 0
0 2(1 − ρ)

]

.

Therefore, Y1 and Y2 are uncorrelated. Since they are also jointly Gaussian, they are inde-
pendent.
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