EE 511 Solutions to Problem Set 3

1. (a) $F_{Y}(y \mid X=1 / 4)=P[Y \leq y \mid X=1 / 4]=P[X+N \leq y \mid X=1 / 4]=P[1 / 4+N \leq$ $y \mid X=1 / 4]=P[N \leq y-1 / 4 \mid X=1 / 4]$. Since X and N are independent, we have $P[N \leq$ $y-1 / 4 \mid X=1 / 4]=P[N \leq y-1 / 4]$ and

$$
F_{Y}(y \mid X=1 / 4)=F_{N}(y-1 / 4)
$$

Therefore,

$$
f_{Y}(y \mid X=1 / 4)=f_{N}(y-1 / 4)
$$

i.e., uniform over $(-1 / 4,3 / 4)$.

Similarly, we get

$$
f_{Y}(y \mid X=-1 / 4)=f_{N}(y+1 / 4)
$$

i.e., uniform over ($-3 / 4,1 / 4$).

Now,

$$
f_{Y}(y)=P[X=1 / 4] f_{Y}(y \mid X=1 / 4)+P[X=-1 / 4] f_{Y}(y \mid X=-1 / 4)
$$

(b) Let C denote the event that we make a correct decision. We have

$$
P[C]=\int_{-\infty}^{\infty} P[C \mid Y=y] f_{Y}(y) d y
$$

Since the integrand in the above equation is always positive, maximizing $P[C]$ is the same as maximizing $P[C \mid Y=y]$ for each y. Therefore, the optimal rule is to choose

$$
\begin{gathered}
\text { Decision }=1 / 4 \text { if } P[X=1 / 4 \mid Y=y]>P[X=-1 / 4 \mid Y=y] \\
\text { Decision }=-1 / 4 \text { if } P[X=-1 / 4 \mid Y=y]>P[X=1 / 4 \mid Y=y]
\end{gathered}
$$

This can also be written as

$$
\begin{gathered}
\text { Decision }=1 / 4 \text { if } \frac{f_{Y}[y \mid X=1 / 4] P[X=1 / 4]}{f_{Y}(y)}>\frac{f_{Y}[y \mid X=-1 / 4] P[X=-1 / 4]}{f_{Y}(y)} \\
\text { Decision }=-1 / 4 \text { if } \frac{f_{Y}[y \mid X=-1 / 4] P[X=-1 / 4]}{f_{Y}(y)}>\frac{f_{Y}[y \mid X=1 / 4] P[X=1 / 4]}{f_{Y}(y)}
\end{gathered}
$$ i.e.,

Decision $=1 / 4$ if $f_{Y}[y \mid X=1 / 4] P[X=1 / 4]>f_{Y}[y \mid X=-1 / 4] P[X=-1 / 4]$
Decision $=-1 / 4$ if $f_{Y}[y \mid X=-1 / 4] P[X=-1 / 4]>f_{Y}[y \mid X=1 / 4] P[X=1 / 4]$ In this case, we have Decision $=1 / 4$ if $y \geq-1 / 4$ and Decision $=-1 / 4$ if $y<-1 / 4$.
2. We have $Y=g(X) . \quad F_{Y}(g(\alpha))=P[Y \leq g(\alpha)]$. Since $g(x)$ is a monotonically increasing function in x, it has an inverse and $Y \leq g(\alpha)$ is equivalently $g^{-1}(Y) \leq \alpha$. Therefore, we have

$$
F_{Y}(g(\alpha))=P[Y \leq g(\alpha)]=P\left[g^{-1}(Y) \leq \alpha\right]=P[X \leq \alpha]=F_{X}(\alpha)
$$

3. For $-2 \leq y<2, F_{Y}(y)=P[Y \leq y]=P[X \leq y]=F_{X}(y)$. For $y<-2, F_{Y}(y)=0$ since $Y \geq-2$. Similarly, for $y \geq 2, F_{Y}(y)=1$ since $Y \leq 2$. Therefore, the cdf is as shown below.

Uniform pdf with 2 delta functions at -2 and 2

Using the cdf, we get the pdf to be

$$
f_{Y}(y)=P[X \leq-2] \delta(y+2)+f_{X}(y)+P[X>2] \delta(y-2)
$$

for $-2 \leq y \leq 2$ and $f_{Y}(y)=0$ otherwise.
4. $Y=X^{2}$. For $y \geq 0, F_{Y}(y)=P[Y \leq y]=P\left[X^{2} \leq y\right]=P[-\sqrt{y} \leq X \leq \sqrt{ }(y)]=$ $F_{X}(\sqrt{y})-F_{X}(-\sqrt{y})$. Therefore, we have

$$
f_{Y}(y)=\frac{1}{2 \sqrt{y}} f_{X}(\sqrt{y})+\frac{1}{2 \sqrt{y}} f_{X}(-\sqrt{y})
$$

(a)

$$
f_{Y}(y)=\frac{1}{2 \alpha} \exp \left\{-\frac{y}{2 \alpha}\right\}
$$

(b)

$$
f_{Y}(y)=\frac{1}{\sqrt{2 \pi} \sigma \sqrt{y}} \exp \left\{-\frac{y}{2 \sigma^{2}}\right\}
$$

5. For $y \geq 0$, we have
$F_{Y}(y \mid X>0)=P[Y \leq y \mid X>0]=P\left[X^{2} \leq y \mid X>0\right]=\frac{P\left[X^{2} \leq y, X>0\right]}{P[X>0]}=\frac{P[0<X \leq \sqrt{y}]}{P[X>0]}$
Therefore, we have

$$
F_{Y}(y \mid X>0)=\frac{F_{X}(\sqrt{y})-F_{X}(0)}{1-F_{X}(0)}
$$

From this, we get

$$
f_{Y}(y \mid X>0)=\frac{f_{X}(\sqrt{y})}{2 \sqrt{y}\left(1-F_{X}(0)\right)}
$$

for $y \geq 0$.
6. $g()=.F_{Y}^{-1}($.$) or Y=F_{Y}^{-1}(X)$ is the solution. First, let us determine $F_{Y}(y)$. For $y \geq 0$, we have

$$
F_{Y}(y)=1-\int_{y}^{\infty} \frac{e^{-\sqrt{2} y}}{\sqrt{2}} d y=\left.\frac{1}{2} e^{-\sqrt{2} y}\right|_{y} ^{\infty}+1=1-\frac{1}{2} e^{-\sqrt{2} y}
$$

For $y<0$, we have

$$
F_{Y}(y)=\int_{-\infty}^{y} \frac{e^{\sqrt{2} y}}{\sqrt{2}} d y=\left.\frac{e^{\sqrt{2} y}}{2}\right|_{-\infty} ^{y}=\frac{e^{\sqrt{2} y}}{2}
$$

Therefore, we get $g(x)$ to be

$$
g(x)=F_{Y}^{-1}(x)= \begin{cases}\frac{\log (2 x)}{\sqrt{2}} & 0 \leq x<0.5 \\ -\frac{\log (2-2 x)}{\sqrt{2}} & 0.5 \leq x \leq 1\end{cases}
$$

7. $Z=X+Y$ where X and Y are independent random variables. Therefore, the pdf of Z is the convolution of the pdf's of X and Y.

$$
f_{Z}(z)=\int_{-\infty}^{\infty} f_{X}(\alpha) f_{Y}(z-\alpha) d \alpha
$$

For $z<0$ and $z>3, f_{Z}(z)=0$. For $0 \leq z \leq 1$, we have

$$
f_{Z}(z)=\int_{0}^{z} \frac{1}{2} d \alpha=\frac{z}{2} .
$$

For $1<z \leq 2$, we have

$$
f_{Z}(z)=\int_{0}^{1} \frac{1}{2} d \alpha=\frac{1}{2}
$$

For $2<z \leq 3$, we have

$$
f_{Z}(z)=\int_{z-2}^{1} \frac{1}{2} d \alpha=\frac{3-z}{2} .
$$

8. (i)

$$
\begin{aligned}
F_{Z}(z \mid Y=y) & =P[Z \leq z \mid Y=y] \\
& =P[X / Y \leq z \mid Y=y] \\
& =P[X \leq z y \mid Y=y] \\
& =P[X \leq z y] \\
& =F_{X}(z y)
\end{aligned}
$$

$$
\begin{aligned}
f_{Z}(z \mid Y=y) & =y f_{X}(z y) \\
& =y(z y) e^{-\frac{(z y)^{2}}{2}} \\
& =z y^{2} e^{-\frac{z^{2} y^{2}}{2}} \text { for } \quad z \geq 0 .
\end{aligned}
$$

(ii)

$$
\begin{aligned}
f_{Z}(z) & =\int_{0}^{\infty} f_{Z}(z \mid Y=y) f_{Y}(y) d y \\
& =\int_{0}^{\infty} z y^{2} e^{-\frac{z^{2} y^{2}}{2}} y e^{-\frac{y^{2}}{2}} d y \\
& =z \int_{0}^{\infty} y^{3} e^{-y^{2} \frac{z^{2}+1}{2}} d y \\
& =\frac{z}{2\left(\frac{z^{2}+1}{2}\right)^{2}} \\
& =\frac{2 z}{\left(z^{2}+1\right)^{2}}
\end{aligned} \text { for } \quad z \geq 0 .
$$

9. Since X and Y are i. i. d. zero-mean Gaussian random variables with variance σ^{2}, we have

$$
f_{X, Y}(x, y)=\frac{1}{2 \pi \sigma^{2}} e^{-\frac{x^{2}+y^{2}}{2 \sigma^{2}}}
$$

The Jacobian for the transformation $r=\sqrt{x^{2}+y^{2}}$ and $\theta=\tan ^{-1}(y / x)$ is

$$
J(x, y)=\operatorname{det}\left(\left[\begin{array}{cc}
\frac{\partial r}{\partial x} & \frac{\partial r}{\partial y} \\
\frac{\partial \theta}{\partial x} & \frac{\partial \theta}{\partial y}
\end{array}\right]\right)=\operatorname{det}\left(\left[\begin{array}{cc}
\frac{x}{\sqrt{x^{2}+y^{2}}} & \frac{y}{\sqrt{x^{2}+y^{2}}} \\
\frac{-y}{x^{2}+y^{2}} & \frac{x}{x^{2}+y^{2}}
\end{array}\right]\right)=\frac{1}{\sqrt{x^{2}+y^{2}}}
$$

The inverse transformation is $x=r \cos \theta$ and $y=r \sin \theta$.

$$
f_{R, \Theta}(r, \theta)=\frac{f_{X, Y}(r \cos \theta, r \sin \theta)}{|J(r \cos \theta, r \sin \theta)|}
$$

Therefore, we have

$$
f_{R, \Theta}(r, \theta)=\frac{r}{2 \pi \sigma^{2}} e^{-\frac{r^{2}}{2 \sigma^{2}}}
$$

for $0 \leq r<\infty$ and $0 \leq \theta \leq 2 \pi$. From this, we get

$$
f_{R}(r)=\int_{0}^{2 \pi} f_{R, \Theta}(r, \theta) d \theta=\int_{0}^{2 \pi} \frac{r}{2 \pi \sigma^{2}} e^{-\frac{r^{2}}{2 \sigma^{2}}} d \theta=\frac{r}{\sigma^{2}} e^{-\frac{r^{2}}{2 \sigma^{2}}}
$$

for $0 \leq r<\infty$. Similarly, we get

$$
f_{\Theta}(\theta)=\int_{0}^{\infty} f_{R, \Theta}(r, \theta) d r=\int_{0}^{\infty} \frac{r}{2 \pi \sigma^{2}} e^{-\frac{r^{2}}{2 \sigma^{2}}} d r=\frac{1}{2 \pi}
$$

for $0 \leq \theta \leq 2 \pi$. Now, we see that $f_{R, \Theta}(r, \theta)=f_{R}(r) f_{\Theta}(\theta)$. Therefore, R and Θ are independent.

10.

$$
\begin{aligned}
& F_{Z, W}(z, w)=P[\max (X, Y) \leq z, \min (X, Y) \leq w] \\
= & \begin{cases}F_{X, Y}(w, z)+F_{X, Y}(z, w)-F_{X, Y}(w, w) & z \geq w \\
0 & z<w\end{cases}
\end{aligned}
$$

Therefore,

$$
f_{Z, W}(z, w)= \begin{cases}f_{X, Y}(w, z)+f_{X, Y}(z, w) & z \geq w \\ 0 & z<w\end{cases}
$$

When X and Y are i.i.d. and

$$
f_{X}(x)= \begin{cases}\lambda e^{-\lambda x} & x \geq 0 \\ 0 & \text { else }\end{cases}
$$

we have

$$
f_{X, Y}(x, y)=\lambda^{2} e^{-\lambda(x+y)}
$$

and

$$
f_{Z, W}(z, w)= \begin{cases}2 \lambda^{2} e^{-\lambda(w+z)} & z \geq w \\ 0 & \text { else }\end{cases}
$$

11. We have $Z=\sqrt{X^{2}+Y^{2}}$ and $W=X / Y$. Solving for X and Y, we get $X=Y W$ and

$$
Z=\sqrt{Y^{2} W^{2}+Y^{2}}= \pm Y \sqrt{W^{2}+1}
$$

Therefore, we have the following two solutions for X and Y :
(i) $Y=\frac{Z}{\sqrt{W^{2}+1}}, X=\frac{Z W}{\sqrt{W^{2}+1}}$, and
(ii) $Y=-\frac{Z}{\sqrt{W^{2}+1}}, X=-\frac{Z W}{\sqrt{W^{2}+1}}$.

Thus, an infinitesimal rectangle in the $z w$-plane corresponds to two infinitesimal regions in the $x y$-plane. The determinant of the Jacobian for both these regions is identical and equal to

$$
\operatorname{det}\left(\left[\begin{array}{cc}
\frac{\partial}{\partial z}\left(\frac{z}{\sqrt{w^{2}+1}}\right. & \frac{\partial}{\partial w}\left(\frac{z}{\sqrt{w^{2}+1}}\right) \\
\frac{\partial}{\partial z}\left(\frac{z w}{\sqrt{w^{2}+1}}\right. & \frac{\partial}{\partial w}\left(\frac{z w}{\sqrt{w^{2}+1}}\right)
\end{array}\right]\right)=\operatorname{det}\left(\left[\begin{array}{cc}
\frac{1}{\sqrt{w^{2}+1}} & -\frac{z w}{\left(w^{2}+1\right)^{3 / 2}} \\
\frac{w}{\sqrt{w^{2}+1}} & \left(-\frac{z w^{2}}{\left(w^{2}+1\right)^{3 / 2}}+\frac{z}{\sqrt{w^{2}+1}}\right)
\end{array}\right]\right) .
$$

Therefore, we have

$$
\begin{gathered}
|J|=\frac{z}{w^{2}+1} . \\
f_{X, Y}(x, y)=\frac{1}{2 \pi} e^{-\frac{x^{2}+y^{2}}{2}} . \\
f_{Z, W}(z, w)=|J| f_{X, Y}\left(\frac{z w}{\sqrt{w^{2}+1}}, \frac{z}{\sqrt{w^{2}+1}}\right)+|J| f_{X, Y}\left(-\frac{z w}{\sqrt{w^{2}+1}},-\frac{z}{\sqrt{w^{2}+1}}\right) . \\
f_{Z, W}(z, w)=\frac{2}{2 \pi} \frac{z}{w^{2}+1} e^{-\frac{z^{2}}{2}}=\frac{1}{\pi\left(w^{2}+1\right)} z e^{-\frac{z^{2}}{2}} \quad \text { for } \quad z \geq 0 . \\
f_{Z}(z)=\int_{-\infty}^{\infty} f_{Z, W}(z, w) d w=z e^{-\frac{z^{2}}{2}} \quad \text { for } \quad z \geq 0 . \\
f_{W}(w)=\int_{0}^{\infty} f_{Z, W}(z, w) d z=\frac{1}{\pi\left(w^{2}+1\right)} .
\end{gathered}
$$

Z is Rayleigh distributed and W is Cauchy distributed.

