EE 511 Solutions to Problem Set 2

1.

$$
P(A B \mid A)=\frac{P(A B)}{P(A)} \quad \text { and } \quad P(A B \mid(A+B))=\frac{P(A B(A+B))}{P(A+B)}=\frac{P(A B)}{P(A+B)} .
$$

Since $P(A+B) \geq P(A), P(A B \mid(A+B)) \leq P(A B \mid A)$.
2. Since A and B are mutually exclusive, $A B=\phi$ and $P(A B)=0$. For A and B to be independent, we need $P(A B)=P(A) P(B)$. This is possible only if $P(A)=0$ or $P(B)=0$ or both.
3. (a) True. (b) False. (c) False, in general. True only if $X(s)=a \forall s \in S$. (d) True.
4. (i) For $f_{X}(x)$ to be a valid pdf, we need

$$
\int_{-1}^{1} f_{X}(x) d x=1 \quad \text { i.e., } \quad \int_{-1}^{1} c\left(1-x^{2}\right) d x=1
$$

Therefore, we have

$$
\begin{gathered}
\left.c\left(x-\frac{x^{3}}{3}\right)\right|_{-1} ^{1}=1 \\
2 c-\frac{2 c}{3}=1
\end{gathered}
$$

Therefore, $c=3 / 4$.
(ii)

$$
\begin{gathered}
P[X>0]=\int_{0}^{1} \frac{3}{4}\left(1-x^{2}\right) d x=\frac{1}{2} . \\
P\left[X<\frac{1}{2}\right]=\int_{-1}^{0.5} \frac{3}{4}\left(1-x^{2}\right) d x=\frac{27}{32} . \\
P[|X|>0.75]=2 \int_{0.75}^{1} \frac{3}{4}\left(1-x^{2}\right) d x=\frac{11}{128} .
\end{gathered}
$$

5. (i) This function cannot be a pdf since $f(x)<0$ for $-1 \leq x<0$.
(ii) This function can be a pdf since $f(x) \geq 0$ for all x and

$$
\int_{-\infty}^{\infty} f(x) d x=1
$$

6.

$$
F_{X}(x)=F_{X, Y}(x, \infty)= \begin{cases}1 & x>1 \\ \frac{1}{2} & 0 \leq x \leq 1 \\ 0 & x<0\end{cases}
$$

Similarly, we have

$$
F_{Y}(y)=F_{X, Y}(\infty, y)= \begin{cases}1 & y>1 \\ \frac{1}{2} & 0 \leq y \leq 1 \\ 0 & y<0\end{cases}
$$

7. $F_{X}(\alpha)=P[X \leq \alpha]$ and $F_{Y}(\alpha)=P[Y \leq \alpha]$. We know that $X(s) \leq Y(s)$ for all $s \in S$. Therefore, we can say that $Y(s) \leq \alpha$ implies $X(s) \leq \alpha$, i.e., the set of all elements $s \in S$ such that $Y(s) \leq \alpha$ is a subset of the set of all elements $s \in S$ such that $X(s) \leq \alpha$.

$$
\{s \in S: Y(s) \leq \alpha\} \subset\{s \in S: X(s) \leq \alpha\}
$$

Therefore, we have

$$
P\{s \in S: Y(s) \leq \alpha\} \leq P\{s \in S: X(s) \leq \alpha\}
$$

which implies $F_{Y}(\alpha) \leq F_{X}(\alpha)$.

