EE 511 Solutions to Problem Set 1

- 1. (i) $A + \overline{A} = S$ and $A\overline{A} = \phi$. Therefore, $P(A) + P(\overline{A}) = P(S) = 1$ and $P(\overline{A}) = 1 P(A)$. (ii) $P(\overline{A}) \ge 0$. Therefore, $P(A) \le 1$.
 - (iii) $\phi + S = S$ and $\phi S = \phi$. Therefore, $P(\phi) + P(S) = P(S)$ and $P(\phi) = 0$.
 - (iv) $B = BS = B(A_1 + \dots + A_n)$. Since BA_i and BA_j are disjoint for $i \neq j$, $P(B) = P(BA_1) + P(BA_2) + \dots + P(BA_n)$.
- 2. $B = A + \overline{A}B$ where $A(\overline{A}B) = \phi$. Therefore, $P(A) + P(\overline{A}B) = P(B)$. Since $P(\overline{A}B) \ge 0$, $P(A) \le P(B)$.
- 3. $A + B = A + \overline{A}B$ with $A(\overline{A}B) = \phi$. Therefore, $P(A + B) = P(A) + P(\overline{A}B)$. Similarly, $B = (A + \overline{A})B = AB + \overline{A}B$. Therefore, $P(B) = P(AB) + P(\overline{A}B)$. Substituting this in the equation for P(A + B), we get

$$P(A+B) = P(A) + P(B) - P(AB)$$

Now,

4. We want to show $P(\sum_{i=1}^{N} A_i) \leq \sum_{i=1}^{N} P(A_i)$. This can be done in several ways.

Solution 1:

We have shown in problem 3 that P(A + B) = P(A) + P(B) - P(AB), i.e., $P(A + B) \le P(A) + P(B)$. Using this result repeatedly, we get

$$P(\sum_{i=1}^{N} A_i) = P(A_1 + \sum_{i=2}^{N} A_i) \leq P(A_1) + P(\sum_{i=2}^{N} A_i)$$

$$P(\sum_{i=2}^{N} A_i) = P(A_2 + \sum_{i=3}^{N} A_i) \leq P(A_2) + P(\sum_{i=3}^{N} A_i)$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$P(\sum_{i=N-1}^{N} A_i) = P(A_{N-1} + A_N) \leq P(A_{N-1}) + P(A_N)$$

Combining the above equations, we get the desired result.

Solution 2:

We can write
$$\sum_{i=1}^{N} A_i$$
 as the sum of disjoint events $\sum_{i=1}^{N} B_i$ where $B_i = \overline{A_1} \ \overline{A_2} \ \cdots \ \overline{A_{i-1}} \ A_i$

Now, for every *i*, we have $B_i \subset A_i$ and hence, using the result from problem 2, we have $P(B_i) \leq P(A_i)$. Therefore, we have

$$P(\sum_{i=1}^{N} A_i) = P(\sum_{i=1}^{N} B_i) = \sum_{i=1}^{N} P(B_i) \le \sum_{i=1}^{N} P(A_i).$$

- 5. P(AB) = P(A) + P(B) P(A + B). Using $P(A + B) \le 1$, $P(A) \ge 1 \delta$ and $P(B) \ge 1 \delta$, we get $P(AB) \ge 1 \delta + 1 \delta 1$. Therefore, $P(AB) \ge 1 2\delta$.
- 6. AB = A. P(A|B) = P(A)/P(B) = 3/4. P(B|A) = 1.

$$P(AB|C) = \frac{P(ABC)}{P(C)} = \frac{P(A|BC)P(BC)}{P(C)} = P(A|BC)P(B|C).$$
$$P(ABC) = P(AB|C)P(C) = P(A|BC)P(B|C)P(C)$$

8. We know, P(A) > P(B) > P(C) > 0, A + B = S, $AB = \phi$ and P(AC) = P(A)P(C). We want to know if B and C can be disjoint. Let us evaluate P(BC). If $BC = \phi$, P(BC) should be 0.

Since A and B partition S, we have C = SC = (A + B)C = AC + BC and P(C) = P(AC) + P(BC). Since A and C are independent, we have

$$P(C) = P(A)P(C) + P(BC)$$

Therefore, we get

$$P(BC) = P(C)(1 - P(A))$$

Since A + B = S and $AB = \phi$, P(A) + P(B) = P(S) = 1. Therefore, 1 - P(A) = P(B). Using this, we get

$$P(BC) = P(C)P(B) > 0$$

as P(B) > 0 and P(C) > 0. Since P(BC) > 0, B and C cannot be disjoint.

9. (i) $B = SB = (A + \overline{A})B = AB + \overline{A}B$. Using this, we get $P(B) = P(AB) + P(\overline{A}B)$. Now,

$$P(\overline{A}B) = P(B) - P(AB) = P(B) - P(A)P(B) = (1 - P(A))P(B) = P(\overline{A})P(B)$$

Therefore, \overline{A} and B are independent if A and B are independent.

(ii) From (i), we know that given two independent events, complementing one of the events still gives two independent events. Therefore, if \overline{A} and B are independent, \overline{A} and \overline{B} are independent. Since \overline{A} and B are independent if A and B are independent, \overline{A} and \overline{B} are independent if A and B are independent.

In fact, the following general result can be shown easily using the same technique used in part (i): If the events $A_1, A_2, ..., A_n$ are independent and B_i equals A_i or $\overline{A_i}$ or S, then the events $B_1, B_2, ..., B_n$ are also independent.

10. P(A(B+C)) = P(AB+AC) = P(AB) + P(AC) - P(ABC). Since A, B, and C are independent, P(A(B+C)) = P(A)P(B) + P(A)P(C) - P(A)P(B)P(C) = P(A)[P(B) + P(C) - P(BC)] = P(A)P(B+C). Thus, A and B+C are independent.