EE 511 Solutions to Problem Set 1

1. (i) $A+\bar{A}=S$ and $A \bar{A}=\phi$. Therefore, $P(A)+P(\bar{A})=P(S)=1$ and $P(\bar{A})=1-P(A)$.
(ii) $P(\bar{A}) \geq 0$. Therefore, $P(A) \leq 1$.
(iii) $\phi+S=S$ and $\phi S=\phi$. Therefore, $P(\phi)+P(S)=P(S)$ and $P(\phi)=0$.
(iv) $B=B S=B\left(A_{1}+\ldots+A_{n}\right)$. Since $B A_{i}$ and $B A_{j}$ are disjoint for $i \neq j, P(B)=$ $P\left(B A_{1}\right)+P\left(B A_{2}\right)+\ldots+P\left(B A_{n}\right)$.
2. $B=A+\bar{A} B$ where $A(\bar{A} B)=\phi$. Therefore, $P(A)+P(\bar{A} B)=P(B)$. Since $P(\bar{A} B) \geq 0$, $P(A) \leq P(B)$.
3. $A+B=A+\bar{A} B$ with $A(\bar{A} B)=\phi$. Therefore, $P(A+B)=P(A)+P(\bar{A} B)$. Similarly, $B=(A+\bar{A}) B=A B+\bar{A} B$. Therefore, $P(B)=P(A B)+P(\bar{A} B)$. Substituting this in the equation for $P(A+B)$, we get

$$
P(A+B)=P(A)+P(B)-P(A B)
$$

Now,

$$
\begin{aligned}
\mathrm{P}(\mathrm{~A}+\mathrm{B}+\mathrm{C})=\mathrm{P}((\mathrm{~A}+\mathrm{B})+\mathrm{C}) & =\mathrm{P}(\mathrm{~A}+\mathrm{B})+\mathrm{P}(\mathrm{C})-\mathrm{P}((\mathrm{~A}+\mathrm{B}) \mathrm{C}) \\
& =\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B})-\mathrm{P}(\mathrm{AB})+\mathrm{P}(\mathrm{C})-\mathrm{P}(\mathrm{AC}+\mathrm{BC}) \\
& =\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B})+\mathrm{P}(\mathrm{C})-\mathrm{P}(\mathrm{AB})-(\mathrm{P}(\mathrm{AC})+\mathrm{P}(\mathrm{BC})-\mathrm{P}(\mathrm{ACBC})) \\
& =\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B})+\mathrm{P}(\mathrm{C})-\mathrm{P}(\mathrm{AB})-\mathrm{P}(\mathrm{AC})-\mathrm{P}(\mathrm{BC})+\mathrm{P}(\mathrm{ABC})
\end{aligned}
$$

4. We want to show $P\left(\sum_{i=1}^{N} A_{i}\right) \leq \sum_{i=1}^{N} P\left(A_{i}\right)$. This can be done in several ways.

Solution 1:

We have shown in problem 3 that $P(A+B)=P(A)+P(B)-P(A B)$, i.e., $P(A+B) \leq$ $P(A)+P(B)$. Using this result repeatedly, we get

$$
\begin{array}{rcc}
P\left(\sum_{i=1}^{N} A_{i}\right)=P\left(A_{1}+\sum_{i=2}^{N} A_{i}\right) & \leq P\left(A_{1}\right)+P\left(\sum_{i=2}^{N} A_{i}\right) \\
P\left(\sum_{i=2}^{N} A_{i}\right)=P\left(A_{2}+\sum_{i=3}^{N} A_{i}\right) & \leq & P\left(A_{2}\right)+P\left(\sum_{i=3}^{N} A_{i}\right) \\
\vdots & \vdots & \vdots \\
P\left(\sum_{i=N-1}^{N} A_{i}\right)=P\left(A_{N-1}+A_{N}\right) & \leq & P\left(A_{N-1}\right)+P\left(A_{N}\right)
\end{array}
$$

Combining the above equations, we get the desired result.

Solution 2:

We can write $\sum_{i=1}^{N} A_{i}$ as the sum of disjoint events $\sum_{i=1}^{N} B_{i}$ where $B_{i}=\overline{A_{1}} \overline{A_{2}} \ldots \overline{A_{i-1}} A_{i}$.

Now, for every i, we have $B_{i} \subset A_{i}$ and hence, using the result from problem 2 , we have $P\left(B_{i}\right) \leq P\left(A_{i}\right)$. Therefore, we have

$$
P\left(\sum_{i=1}^{N} A_{i}\right)=P\left(\sum_{i=1}^{N} B_{i}\right)=\sum_{i=1}^{N} P\left(B_{i}\right) \leq \sum_{i=1}^{N} P\left(A_{i}\right)
$$

5. $P(A B)=P(A)+P(B)-P(A+B)$. Using $P(A+B) \leq 1, P(A) \geq 1-\delta$ and $P(B) \geq 1-\delta$, we get $P(A B) \geq 1-\delta+1-\delta-1$. Therefore, $P(A B) \geq 1-2 \delta$.
6. $A B=A . \quad P(A \mid B)=P(A) / P(B)=3 / 4 . \quad P(B \mid A)=1$.
7.

$$
\begin{gathered}
P(A B \mid C)=\frac{P(A B C)}{P(C)}=\frac{P(A \mid B C) P(B C)}{P(C)}=P(A \mid B C) P(B \mid C) . \\
P(A B C)=P(A B \mid C) P(C)=P(A \mid B C) P(B \mid C) P(C)
\end{gathered}
$$

8. We know, $P(A)>P(B)>P(C)>0, A+B=S, A B=\phi$ and $P(A C)=P(A) P(C)$. We want to know if B and C can be disjoint. Let us evalaute $P(B C)$. If $B C=\phi, P(B C)$ should be 0 .

Since A and B partition S, we have $C=S C=(A+B) C=A C+B C$ and $P(C)=$ $P(A C)+P(B C)$. Since A and C are independent, we have

$$
P(C)=P(A) P(C)+P(B C)
$$

Therefore, we get

$$
P(B C)=P(C)(1-P(A))
$$

Since $A+B=S$ and $A B=\phi, P(A)+P(B)=P(S)=1$. Therefore, $1-P(A)=P(B)$. Using this, we get

$$
P(B C)=P(C) P(B)>0
$$

as $P(B)>0$ and $P(C)>0$. Since $P(B C)>0, B$ and C cannot be disjoint.
9. (i) $B=S B=(A+\bar{A}) B=A B+\bar{A} B$. Using this, we get $P(B)=P(A B)+P(\bar{A} B)$. Now,

$$
P(\bar{A} B)=P(B)-P(A B)=P(B)-P(A) P(B)=(1-P(A)) P(B)=P(\bar{A}) P(B)
$$

Therefore, \bar{A} and B are independent if A and B are independent.
(ii) From (i), we know that given two independent events, complementing one of the events still gives two independent events. Therefore, if \bar{A} and B are independent, \bar{A} and \bar{B} are independent. Since \bar{A} and B are independent if A and B are independent, \bar{A} and \bar{B} are independent if A and B are independent.
In fact, the following general result can be shown easily using the same technique used in part (i): If the events $A_{1}, A_{2}, \ldots, A_{n}$ are independent and B_{i} equals A_{i} or $\overline{A_{i}}$ or S, then the events $B_{1}, B_{2}, \ldots, B_{n}$ are also independent.
10. $P(A(B+C))=P(A B+A C)=P(A B)+P(A C)-P(A B C)$. Since A, B, and C are independent, $P(A(B+C))=P(A) P(B)+P(A) P(C)-P(A) P(B) P(C)=P(A)[P(B)+P(C)-P(B C)]=$ $P(A) P(B+C)$. Thus, A and $B+C$ are independent.

