EE 511 Problem Set 7

Due on 16 Nov 2007

- 1. Let \hat{X}_t be the Hilbert transform of the W.S.S. random process X_t . Show that (i) $S_{\hat{X}}(f) = S_X(f)$, (ii) $S_{X\hat{X}}(f) = -S_{\hat{X}X}(f)$, (iii) $E[X_t\hat{X}_t] = 0$, and (iv) for $Z_t = X_t + j\hat{X}_t$, determine $S_Z(f)$ in terms of $S_X(f)$.
- 2. The power spectrum of a W.S.S. band-pass random process X_t is as shown in Figure 1. Sketch $S_{X^I}(f)$, $S_{X^Q}(f)$ and $S_{X^IX^Q}(f)$ assuming 5 MHz to be the carrier frequency.

Figure 1:

- 3. Repeat problem 2 assuming 4 MHz to be the carrier frequency.
- 4. A narrow-band noise process N_t has zero-mean and auto-correlation function $R_N(\tau)$. Its power spectral density $S_N(f)$ is centered about $\pm f_c$. The in-phase and quadrature components N_t^I and N_t^Q are defined by $N_t^I = N_t \cos 2\pi f_c t + \hat{N}_t \sin 2\pi f_c t$ and $N_t^Q = \hat{N}_t \cos 2\pi f_c t N_t \sin 2\pi f_c t$. Show that $R_{N^I}(\tau) = R_{N^Q}(\tau) = R_N(\tau) \cos 2\pi f_c \tau + \hat{R}_N(\tau) \sin 2\pi f_c \tau$ and $R_{N^I N^Q}(\tau) =$ $-R_{N^Q N^I}(\tau) = R_N(\tau) \sin 2\pi f_c \tau - \hat{R}_N(\tau) \cos 2\pi f_c \tau$, where $\hat{R}_N(\tau)$ is the Hilbert transform of $R_N(\tau)$.
- 5. A pair of noise processes N_t and W_t are related by $N_t = W_t \cos(2\pi f_c t + \Theta) W_t \sin(2\pi f_c t + \Theta)$, where f_c is a constant and Θ is a uniform random variable in the interval $[0, 2\pi]$. The noise process W_t is stationary and its power spectral density is as shown in Figure 2. Find and plot the power spectral density of N_t , $S_N(f)$.

Figure 2:

6. A W. S. S. band-pass random process X_t is generated from two W. S. S. low-pass random processes X_t^I and X_t^Q as follows: $X_t = X_t^I \cos 2\pi f_c t - X_t^Q \sin 2\pi f_c t$. $S_{X^I}(f)$ and $S_{X^I X^Q}(f)$ are as shown in Figure 3. (a) Sketch $S_{X^Q}(f)$ and $S_{X^Q X^I}(f)$. (b) Determine and sketch $S_X(f)$

assuming $f_c = 10MHz$. (c) Determine and sketch $S_{\tilde{X}}(f)$, the power spectral density of the complex baseband equivalent process given by $X_t^I + jX_t^Q$.

Figure 3:

7. The power spectral density of a wide-sense stationary band-pass random process X_t is as shown in Figure 4.

Figure 4:

(a) Assuming that the carrier frequency is 11 MHz, sketch $S_{XI}(f)$, the power spectral density of the in-phase component of the band-pass process, and mark the important details.

(b) Assuming that the carrier frequency is 11 MHz, sketch $S_{X^I X^Q}(f)$, the cross power spectral density of the in-phase and quadrature components of the band-pass process, and mark the important details.

(c) How are $S_{X^Q}(f)$ and $S_{X^QX^I}(f)$ related to $S_{X^I}(f)$ and $S_{X^IX^Q}(f)$?