EE 511 Problem Set 4

1. Consider a Gaussian random variable X with $E[X]=0$ and $\operatorname{var}(X)=1$. (i) Determine the moment generating function $\phi_{X}(s)$, and (ii) Using the result of part (i), determine the Chernoff bound for $P[X \geq a]$. (iii) Use the Chebyshev inequality $P[|X-E[X]| \geq$ $\delta] \leq \operatorname{var}(X) / \delta^{2}$, to derive another bound for $P[X \geq a]$.
2. Consider two zero-mean random variables X and Y. Let $Z=X+a Y$. Suppose that Z is independent of Y. Show that $E[X \mid Y=y]=-a y$.
3. Let X be a uniform random variable in $[0,100]$. Determine $E[X]$ and $E[X \mid X \geq 65]$.
4. Let X be a Poisson random variable with probability mass function

$$
P_{X}(k)=\frac{e^{-a} a^{k}}{k!} \quad \text { for } \quad k=0,1,2, \cdots
$$

Determine $E[X]$ and $\operatorname{Var}(X)$.
5. Consider the random variable X with pdf

$$
f_{X}(x)= \begin{cases}\lambda e^{-\lambda x} & x \geq 0 \\ 0 & \text { else }\end{cases}
$$

Determine $\mathrm{E}[\mathrm{X}], f_{X}(x \mid X \geq 2)$, and $E[X \mid X \geq 2]$.
6. Let Y be a random variable. (i) We want to choose a constant c as an estimate of Y such that $E\left[(Y-c)^{2}\right]$ (mean squared error) is minimized. Prove that the minimum mean squared error (MMSE) constant estimate of Y is $c=E[Y]$ and that the MMSE is $\operatorname{var}(Y)$. (ii) Now, suppose that we can observe the random variable X and we want to choose a function $g($.$) such that E\left[(Y-g(X))^{2}\right]$ is minimized. Write $E\left[(Y-g(X))^{2}\right]$ in terms of $E\left[(Y-g(X))^{2} \mid X=x\right]$ and show that the optimal solution for $g(x)$ is the conditional mean of Y given $X=x$, i.e., $g(x)=E[Y \mid X=x]$.
7. Let X be a zero-mean Gaussian random variable with variance σ^{2}. Determine $E\left[X^{n}\right]$ for $n=2,3, \cdots$ in terms of σ.
8. $\underline{X}=\left[\begin{array}{lll}X_{1} & X_{2} & X_{3}\end{array}\right]^{T}$ is a three-dimensional zero-mean Gaussian random vector with covariance matrix C given by

$$
C=\left[\begin{array}{lll}
3 & 3 & 0 \\
3 & 5 & 0 \\
0 & 0 & 6
\end{array}\right]
$$

a) Give an expression for $f_{\underline{X}}(\underline{x})$. b) If $Y=X_{1}+2 X_{2}-X_{3}$, determine $f_{Y}(y)$. c) Determine $f_{\underline{Z}}(\underline{z})$ for the following transformation:

$$
\underline{Z}=\left[\begin{array}{ccc}
5 & -3 & -1 \\
-1 & 3 & -1 \\
1 & 0 & 1
\end{array}\right] \underline{X}
$$

9. Let $\underline{X}=\left[\begin{array}{ll}X_{1} & X_{2}\end{array}\right]^{T}$ be a two-dimensional zero-mean Gaussian random vector with covariance matrix C given by

$$
C=\left[\begin{array}{ll}
1 & r \\
r & 2
\end{array}\right] .
$$

(a) Give an expression for $f_{X_{2}}\left(x_{2}\right)$.
(b) Determine the conditional pdf, conditional mean and conditional variance of X_{1} given $X_{2}=x_{2}$.
10. (a) If X_{1} and X_{2} are jointly Gaussian random variables, show that their marginal distributions are also Gaussian. (b) If X_{1} and X_{2} are jointly distributed as

$$
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=\frac{1}{2 \pi} \exp \left\{-\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right)\right\}\left(1+x_{1} x_{2} \exp \left\{-\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}-2\right)\right\}\right),
$$

determine the marginal pdf's of X_{1} and X_{2}.
11. Given random vectors \underline{X} and $\underline{Y}=A \underline{X}+\underline{b}$, express $E[\underline{Y}]$ and the covariance matrix of \underline{Y} in terms of $E[\underline{X}]$ and the covariance matrix of \underline{X}.
12. A complex random vector $\underline{X}=\underline{X_{r}}+j \underline{X_{i}}$ is proper if all elements of its pseudo-covariance matrix $E\left[(\underline{X}-E[\underline{X}])(\underline{X}-E[\underline{X}])^{T}\right] \overline{\text { are zero. Express this condition in terms of the }}$ covariance and cross-covariance matrices of $\underline{X_{r}}$ and $\underline{X_{i}}$.
13. If \underline{X} is a jointly Gaussian real random vector with

$$
\phi_{\underline{X}}(\underline{s})=\exp \left\{\underline{s}^{T} \underline{m}+\frac{1}{2} \underline{s}^{T} C \underline{s}\right\},
$$

show that $E[\underline{X}]=\underline{m}$ and $E\left[(\underline{X}-E[\underline{X}])(\underline{X}-E[\underline{X}])^{T}\right]=C$.
14. X_{1} and X_{2} are jointly Gaussian with zero-mean and covariance matrix

$$
C=\left[\begin{array}{ll}
1 & \rho \\
\rho & 1
\end{array}\right] .
$$

Show that $Y_{1}=X_{1}+X_{2}$ and $Y_{2}=X_{1}-X_{2}$ are uncorrelated and independent.
15. X_{1} and X_{2} are jointly Gaussian with zero-mean and covariance matrix

$$
C=\left[\begin{array}{cc}
\sigma_{1}^{2} & \rho \sigma_{1} \sigma_{2} \\
\rho \sigma_{1} \sigma_{2} & \sigma_{2}^{2}
\end{array}\right] .
$$

Show that

$$
Y_{1}=\frac{X_{1}}{\sigma_{1}}+\frac{X_{2}}{\sigma_{2}} \quad \text { and } \quad Y_{2}=\frac{X_{1}}{\sigma_{1}}-\frac{X_{2}}{\sigma_{2}}
$$

are independent.

