EE 511 Problem Set 3

1. The receiver of a communication system receives random variable Y which is defined as $Y=X+N$ in terms of the input random variable X and the channel noise $N . X$ takes on the values $-1 / 4$ and $1 / 4$ with $P[X=1 / 4]=0.6$. Let $f_{N}(n)$ denote the pdf of the channel noise and let X and N be independent. The receiver must decide for each received $Y=y$ whether the transmitted X was $-1 / 4$ or $1 / 4$. If N is uniform in $(-1 / 2,1 / 2)$, (a) determine $f_{Y}(y \mid X=1 / 4), f_{Y}(y \mid X=-1 / 4)$ and $f_{Y}(y)$ (b) determine the optimal rule such that the probability of correct decision is maximised.
2. If random variables X and Y are related via $Y=g(X)$ where $g($.$) is a monotonically increasing$ function, show that their CDF's satisfy $F_{Y}[g(\alpha)]=F_{X}(\alpha)$.
3. Let X be a random variable with pdf $f_{X}(x)$. Define $Y=g(X)$ where

$$
g(x)= \begin{cases}x & |x| \leq 2 \\ -2 & x<-2 \\ 2 & x>2\end{cases}
$$

(i) Determine $f_{Y}(y)$ in terms of $f_{X}($.$) , and (ii) Sketch f_{Y}(y)$ when X is a uniform random variable over the interval $[-3,3]$.
4. X and Y are random variables such that $Y=X^{2}$. Determine the pdf of Y if (a) X is Rayleigh, i.e.,

$$
f_{X}(x)= \begin{cases}\frac{x}{\alpha} \exp \left(\frac{-x^{2}}{2 \alpha}\right) & x \geq 0 \\ 0 & x<0\end{cases}
$$

(b) X is a zero-mean Gaussian with variance σ^{2}, i.e., $f_{X}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(\frac{-x^{2}}{2 \sigma^{2}}\right)$
5. If $Y=X^{2}$, show that $f_{Y}(y \mid X>0)=\frac{1}{\left[1-F_{X}(0)\right] 2 \sqrt{y}} f_{X}(\sqrt{y})$ for $y \geq 0$.
6. X is a uniform random variable over the interval $[0,1]$. Find a function $g($.$) such that Y=g(X)$ has the pdf given by

$$
f_{Y}(y)=\frac{e^{-\sqrt{2}|y|}}{\sqrt{2}}
$$

7. Let X and Y be two independent random variables, where $f_{X}(x)$ is uniform over the interval $[0,1]$ and $f_{Y}(y)$ is uniform over the interval $[0,2]$. Determine and sketch the pdf of the random variable $Z=X+Y$.
8. X and Y are two independent and identically distributed (i.i.d.) random variables with $f_{X}(x)$ given by

$$
f_{X}(x)= \begin{cases}x e^{-x^{2} / 2} & x \geq 0 \\ 0 & \text { else }\end{cases}
$$

Define a new random variable $Z=X / Y$.
(i) Determine $f_{Z}(z \mid Y=y)$, the conditional pdf of Z given $Y=y$.
(ii) Show that $f_{Z}(z)=\frac{2 z}{\left(z^{2}+1\right)^{2}}$ for $z \geq 0$. If necessary, use $\int_{0}^{\infty} y^{3} e^{-k y^{2}} d y=\frac{1}{2 k^{2}}$ where k is a constant.
9. X and Y are independent and identically distributed (i.i.d.) Gaussian random variables with parameters $m=0$ and σ^{2}. Let $R=\sqrt{\left(X^{2}+Y^{2}\right)}$ and $\Theta=\tan ^{-1}(Y / X)$. Determine the joint pdf of R and Θ. Are R and Θ independent?
10. Let $Z=\max (X, Y)$ and $W=\min (X, Y)$, where X and Y are arbitrary random variables. Express the joint pdf of Z and W in terms of the joint pdf of X and Y. If X and Y are i.i.d with

$$
f_{X}(x)= \begin{cases}\lambda e^{-\lambda x} & x \geq 0 \\ 0 & \text { else }\end{cases}
$$

determine the joint pdf of Z and W.
11. Let X and Y be independent, jointly Gaussian zero-mean random variables with unit variance, i. e.,

$$
f_{X, Y}(x, y)=\frac{1}{2 \pi} \exp \left\{-\frac{x^{2}+y^{2}}{2}\right\}
$$

Define random variables Z and W as $Z=\sqrt{X^{2}+Y^{2}}$ and $W=X / Y$. Determine $f_{Z, W}(z, w)$, $f_{Z}(z)$, and $f_{W}(w)$.

