## EE 511 Problem Set 2

Due on 3 Sep 2007

1. $A$ and $B$ are two events. Which is larger, $P[A B \mid A]$ or $P[A B \mid(A+B)]$ ?
2. Events $A$ and $B$ are mutually exclusive. Can they be independent?
3. Consider a random variable $X$ with the property that $a \leq X(s) \leq b$ for all $s$ belonging to the sample space $S$. Which statement(s) is(are) true? (a) $F_{X}(x)=0$ for $x<a$, (b) $F_{X}(x)=0$ for $x>b$, (c) $F_{X}(x)=1$ for $x>a$, and (d) $F_{X}(x)=1$ for $x>b$.
4. Consider a random variable $X$ with pdf $f_{X}(x)$ given by

$$
f_{X}(x)= \begin{cases}c\left(1-x^{2}\right) & -1 \leq x \leq 1 \\ 0 & \text { else }\end{cases}
$$

(i) Find $c$ such that $f_{X}(x)$ is a valid pdf, and (ii) calculate $P[X>0], P[X<1 / 2]$ and $P[|X|>0.75]$.
5. Which of the following functions can be the probability density function of a random variable? (i) $f(x)=x$ for $-1 \leq x \leq 1$ and $f(x)=0$ otherwise, (ii) $f(x)=|x|$ for $-1 \leq x \leq 1$ and $f(x)=0$ otherwise.
6. Two random variables $X$ and $Y$ have the following joint CDF:

$$
F_{X, Y}(x, y)= \begin{cases}1 & \{x \in[1, \infty) \cap y \in[1, \infty)\} \\ 1 / 2 & \{x \in[0,1) \cap y \in[1, \infty)\} \\ 1 / 2 & \{x \in[1, \infty) \cap y \in[0,1)\} \\ 1 / 4 & \{x \in[0,1) \cap y \in[0,1)\} \\ 0 & \text { else }\end{cases}
$$

Determine and sketch $F_{X}(x)$ and $F_{Y}(y)$.
7. Let $X$ and $Y$ be two random variables such that $X(s) \leq Y(s)$ for all $s \in S$. Show that their CDF's satisfy $F_{X}(\alpha) \geq F_{Y}(\alpha)$ for all $\alpha$.

