EE5040: Adaptive Signal Processing
Problem Set 3: Linear least-mean-squares estimation

1. (Sayed II.13, Correlated component) Assume that a zero-mean random variable \(X \) consists of two components, \(X = X_c + Z \), and that only \(X_c \) is correlated with the observation vector \(Y \). Show that the linear least-mean-squares estimator of \(X \) given \(Y \) is simply the linear least-mean-squares estimator of \(X_c \) given \(Y \).

2. (Sayed II.8, Weighted error cost) Show that the linear least-mean-squares estimator of \(X \) given \(Y \), given by \(\hat{X} = K_0 Y \) where \(K_0 \) is any solution to the linear system of equations \(K_0 R_Y = R_{XY} \), also minimizes \(E[\hat{X}^H W \hat{X}] \) for any \(W \geq 0 \).

3. (Sayed II.5, Minimum of a quadratic form) Consider the quadratic cost function \(J(x) = (x - c)^H A (x - c) \) where \(A \) is a Hermitian nonnegative-definite matrix and \(x \) and \(c \) are column vectors. Argue that the minimum value of \(J(x) \) is zero and it is achieved at \(x = c + d \) for any \(d \) satisfying \(Ad = 0 \).