EE5040: Adaptive Signal Processing

Problem Set 1: Optimal least-mean-squares estimation

1. (Sayed I.13) Consider noisy observations \(Y_i = X + V_i \), where \(X \) and \(V_i \) are independent real-valued random variables, \(V_i \) is a white-noise Gaussian random process with zero mean and variance \(\sigma_v^2 \), and \(X \) takes the values \(\pm 1 \) with equal probability. The value of \(X \) is the same for all measurements \(\{ Y_i \} \).

 (a) Show that the least-mean-squares estimate of \(X \) in terms of \(\{ Y_0, Y_1, \ldots, Y_{N-1} \} \) is

 \[\hat{X}_N = \tanh \left(\frac{1}{N-1} \sum_{i=0}^{N-1} \frac{Y_i}{\sigma_v^2} \right). \]

 (b) Assume \(X \) takes the value 1 with probability \(p \) and the value -1 with probability \(1-p \). Show that the least-mean-squares estimate of \(X \) in terms of \(\{ Y_0, Y_1, \ldots, Y_{N-1} \} \) is

 \[\hat{X}_N = \tanh \left(\frac{1}{2} \ln \left(\frac{p}{1-p} \right) + \frac{1}{N-1} \sum_{i=0}^{N-1} \frac{Y_i}{\sigma_v^2} \right). \]

 (c) Assume that the noise is correlated. Let \(R_v = \mathbb{E}[VV^T] \), where \(V = [V_0, V_1, \ldots, V_{N-1}]^T \).

 Show that the least-mean-squares estimate of \(X \) in terms of \(\{ Y_0, Y_1, \ldots, Y_{N-1} \} \) is

 \[\hat{X}_N = \tanh \left(\frac{1}{2} \ln \left(\frac{p}{1-p} \right) + 1^T R_v^{-1} Y \right), \]

 where \(1 = [1, 1, \ldots, 1]_{N \times 1} \).

2. (Sayed I.16) Suppose we observe \(Y = X + V \), where \(X \) and \(V \) are independent real-valued random variables with exponential distributions with parameters \(\lambda_1 \) and \(\lambda_2 \) (\(\lambda_1 \neq \lambda_2 \)). That is, the PDFs of \(X \) and \(V \) are \(f_X(x) = \lambda_1 e^{-\lambda_1 x} \) for \(x \geq 0 \) and \(f_V(v) = \lambda_2 e^{-\lambda_2 v} \) for \(v \geq 0 \), respectively.

 (a) Using the fact that the PDF of the sum of two independent random variables is the convolution of the individual PDFs, show that

 \[f_Y(y) = \frac{\lambda_1 \lambda_2}{\lambda_2 - \lambda_1} e^{-\lambda_2 y} \left[e^{(\lambda_2 - \lambda_1) y} - 1 \right], \quad y \geq 0. \]

 (b) Establish that \(f_{X,Y}(x,y) = \lambda_1 \lambda_2 e^{(\lambda_2 - \lambda_1) x - \lambda_2 y} \), for \(x \geq 0 \) and \(y \geq 0 \).

 (c) Show that the least-mean-squares estimate of \(X \) given \(Y = y \) is

 \[\hat{X} = \frac{1}{\lambda_1 - \lambda_2} - \frac{e^{-\lambda_1 y}}{e^{-\lambda_2 y} - e^{-\lambda_1 y}}. \]