
PSD Estimation Using the DFT

1 Introduction

The power spectral density (or simply power spectrum) of a random signal can be estimated
using the DFT. There are two basic approaches: one is called periodogram analysis and the
other an indirect approach based on the autocorrelation sequence.

2 Estimating the Power Spectrum of a Random Signal Using

the Periodogram

Let x[n] be a stationary random signal and v[n] = x[n] · w[n] where be w[n] is a window
that selects L samples. An estimate of the power spectrum is given by

I(ω) =
1
LU
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where V (ejω) is the Fourier transform of v[n]. The constant U anticipates the need for
normalization to remove the bias in the spectral estimate. When the w[n] is the rectan-
gular window, this estimate is called the periodogram (otherwise, it is called the modified
periodogram). Explicit computation of the periodogram can be carried out only at discrete
frequencies. If ωk = 2πk/N , the DFT is a natural choice:

I(ωk) =
1
LU
|V [k]|2 .

The scale factor U is normally chosen to be the mean-square value of w[n], which for the
rectangular window is 1.

An estimator is said to be consistent if both bias and variance tend to zero as the
data length tends to infinity. The periodogram is not a consistent estimator because the
variance of the estimate does not reduce to zero with increasing window length. This
problem is dealt with by averaging many estimates.1 If the data record is sufficiently long,
the individual estimates are obtained from short non-overlapping blocks. If overlapping
blocks are considered, an overlap of up to half gives further reduction in the variance of
the estimate. If the data length increases to infinity, periodogram averaging produces an
asymptotically unbiased, consistent PSD estimate.

Let x[n] = A cos(ω0n + θ) + e[n] where θ is a uniform random variable between 0 and
2π and e[n] is a zero-mean white noise sequence that has constant power spectrum. Let
A = 0.5, ω0 = 2π/21, and random phase 0 ≤ θ < 2π. Let e[n] be uniformly distributed
such that −

√
3 < e[n] ≤

√
3. Generate 1024 samples of x[n].

1. That the periodogram is not a consistent estimator can be see by computing the PSD
of e[n] for various lengths. Take 16, 64, 256 and 1024 samples of e[n] and zero-pad

1When w[n] is the rectangular window the method of averaging periodograms is called Bartlett’s procedure.
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them appropriately to get a 1024-length sequence. Plot the PSD estimate for each
case. Do the fluctuations diminish with increasing data length? What is the shape of
the true PSD?

2. Compute the periodogram of the entire data x[n] (no averaging).

3. Now let the length of each block be 64. There will be 16 non-overlapping blocks.
Compute the averaged periodogram PSD estimate.

4. Repeat by increasing the noise variance. Also try overlapping blocks.

For this x[n], the expected value of the averaged periodogram at the frequency ω0 is
A2L/4 + σ2

e . For this noise distribution, σ2
e = 1.

3 PSD From Estimated Autocorrelation Sequence

Our second approach is based on the Wiener-Kinchine theorem, which says that the auto-
correlation sequence and PSD are Fourier transform pairs. Therefore we first estimate the
autocorrelation sequence φxx[m] and then compute its Fourier transform to obtain the PSD
estimate.

Let us first understand why the periodogram is not a consistent estimator, i.e., why the
variance does not decrease with increasing data length. It can be show that

I(ω) =
1
LU

L−1∑
m=−(L−1)

cvv[m]e−jωm

where cvv[m] =
L−1∑
n=0

v[n]v[n+m] (which is nothing but the aperiodic autocovariance sequence

estimate for v[n] = w[n] x[n]). Observe that as m gets close to L − 1 only a few samples
of v[n] enter into the computation. This results in poor estimates (large variance) for these
lag values. This variability manifests itself in the Fourier transform as fluctuations at all
frequencies, which is why the periodogram is not a consistent estimator.

As explained above, in the periodogram all lag values are implicitly involved in the PSD
estimate. On the other hand, if we explicitly compute the lag values and discard the poor
estimates for large m, we would have better control over the PSD estimate. Therefore, in
this second approach, we will compute the lag values only up to M (< L) and then compute
their DFT to get the PSD estimate.

Note that the DFT can also be used for computing the lag values. If only a few lags have
to be computed, the time-domain approach is more efficient; otherwise, the DFT approach
is better (because of the FFT algorithm), the break-even point occurring for M < 100.

An estimate of the autocorrelation sequence can be obtained using the corr command
in Scilab. Let us estimate the PSD for the signal given in the previous section using the
autocorrelation approach.
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1. Write down the expression for the correlation sequence of x[n] given in the previ-
ous section. Let M = 64, and estimate these correlation lags using the command
corr(x,64) and plot the result. How does it compare with the theoretical value?

2. Once the autocorrelation sequence has been obtained, the PSD is obtained by first
forming the finite length sequence

s[m] =


φ̂xx[m] wc[m] 0 ≤ m ≤M − 1
0 M ≤ m ≤ N −M
φ̂xx[N −m] wc[N −m] N −M + 1 ≤ m ≤ N − 1

where wc[n] is a symmetric window applied to the correlation sequence. If it is trian-
gular, the resulting estimate is non-negative (because Wc(ejω) ≥ 0 for −π < 0 ≤ π).
If wc[n] is one of the other commonly used windows, e.g., the rectangular window,
non-negativity is not guaranteed. For simplicity, we will use the rectangular window.
The DFT S[k] of s[m] is the PSD estimate using the autocorrelation method. Choose
N = 1024 and compare this estimate with that obtained in the previous section.
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