EC305 Problem Set 1

- 1. Let $x(t) = m(t) \cos 2\pi f_c t$, where m(t) is a real lowpass signal with bandwidth W and $f_c > W$. Find $\hat{x}(t)$, the Hilbert transform of x(t).
- 2. If x(t) is a real signal with no impulses in its spectrum at f = 0, and $\hat{x}(t)$ is its Hilbert transform, show the following:
 - (a) x(t) and $\hat{x}(t)$ have the same energy.
 - (b) The Hilbert transform of $\hat{x}(t)$ is -x(t).
 - (c) x(t) and $\hat{x}(t)$ are orthogonal.
 - (d) The Hilbert transform of $x(\alpha t)$, where α is a non-zero constant, is $sgn(\alpha)\hat{x}(\alpha t)$.
- 3. Consider a bandpass signal $x(t) = m_1(t) \cos 2\pi f_c t m_2(t) \sin 2\pi f_c t$.
 - (a) Determine the in-phase and quadrature components of this signal when the local oscillators used have a phase offset of θ , i.e., they are $\cos(2\pi f_c t + \theta)$ and $\sin(2\pi f_c t + \theta)$.
 - (b) Specialise the result to the case when $m_2(t) = 0$. Compare this with part (a).
- 4. Consider the non-ideal Hilbert transformer in the figure below. If m(t) is the input, and $\hat{m}'(t)$ the output, sketch the spectrum of $x(t) = m(t) \cos 2\pi f_c t + \hat{m}'(t) \sin 2\pi f_c t$, where m(t) is a lowpass signal with bandwidth W. What is the bandwidth of x(t)?

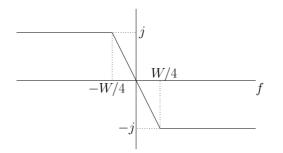


Figure 1: Non-ideal Hilbert transformer

- 5. Consider a non-linear device whose transfer characteristic is defined by $v_2(t) = a_1v_1(t) + a_2v_1^2(t)$, where a_1 and a_2 are constants, $v_1(t)$ is the input, and $v_2(t)$ is the output. Suppose $v_1(t) = A_c[1 + g_m m(t)] \cos 2\pi f_c t$ is an AM signal.
 - (a) Evaluate the output $v_2(t)$.
 - (b) Find the conditions for which the message signal m(t) may be recovered from $v_2(t)$.
- 6. Suppose an AM signal $s(t) = A_c[1 + g_m m(t)] \cos 2\pi f_c t$, where m(t) is a lowpass signal with bandwidth W. Let $v_1(t) = s^2(t), v_2(t)$ be a low pass filtered version of $v_1(t)$ (LPF with bandwidth 2W), and $v_3(t) = \sqrt{v_2(t)}$. Assuming $|g_m m(t)| < 1$ for all t, determine whether m(t) can be obtained from $v_3(t)$.
- 7. Derive the time-domain equation for the SSB signal corresponding to the lower side band of an AM signal $m(t) \cos 2\pi f_c t$.