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Recent Research: Overview

More details at https://www.ee.iitm.ac.in/skrishna/

Research Interests
• Communication and Information Theory

• Statistical Inference

Recent work

 - MIMO 

 - Sequential hypothesis testing

 - Model-based learning for wireless communication
▪ Learning-based sparse recovery for massive random access



Multiple-Input Multi-Output (MIMO)

Multiple power constraints
• Distributed antennas

• Cell-free MIMO, CoMP

• Hardware constraints

Distributed beamforming
• Limited coordination

▪ S. S. Nair and S. Bhashyam, "Hybrid beamforming in MU-MIMO using partial interfering beam feedback," in IEEE 
Communications Letters, vol. 24, no. 7, pp. 1548-1552, July 2020.

▪ S. S. Nair and S. Bhashyam, "Robust Nonlinear Precoding in MU-MIMO using Partial Interfering Beam Feedback," 2023 
IEEE Wireless Communications and Networking Conference (WCNC), Glasgow, United Kingdom, 2023, pp. 1-6. 

▪ R. Chaluvadi, S. S. Nair, S. Bhashyam, "Optimal Multi-antenna Transmission with Multiple Power Constraints," IEEE 
Transactions on Wireless Communications, vol. 18, no. 7, pp. 3382-3394, July 2019.

▪ V. N. Moothedath and S. Bhashyam, "Distributed Pareto Optimal Beamforming for the MISO Multi-band Multi-cell 
Downlink," in IEEE Transactions on Wireless Communications, vol. 19, no. 11, pp. 7196-7209, Nov. 2020.

𝑃𝑡𝑜𝑡

෨𝑃1
෨𝑃2

෢𝑃1
෢𝑃2

෢𝑃3
෡𝑃4

Precoding with partial 
channel knowledge

• Hybrid beamforming 



Sequential hypothesis testing in 
Multi-Armed Bandits

▪ G. R. Prabhu, S. Bhashyam, A. Gopalan and R. Sundaresan, "Sequential Multi-Hypothesis Testing in Multi-Armed Bandit 
Problems: An Approach for Asymptotic Optimality," in IEEE Transactions on Information Theory, vol. 68, no. 7, pp. 4790-
4817, July 2022.

▪ Aditya Deshmukh, Venugopal V. Veeravalli & Srikrishna Bhashyam (2021) Sequential controlled sensing for composite 
multihypothesis testing, Sequential Analysis, 40:2, 259-289.

• Anomaly detection –> Generalized hypothesis testing                    

• Parametric setting: Vector exponential family

• Active sampling under constraints



Sequential hypothesis testing

• Nonparametric setting

• Anomaly detection & 
Clustering

▪ S. C. Sreenivasan and S. Bhashyam, "Sequential Nonparametric Detection of Anomalous Data Streams," in IEEE Signal 
Processing Letters, vol. 28, pp. 932-936, 2021. 

▪ S. C. Sreenivasan, S. Bhashyam, Nonparametric Sequential Clustering of Data Streams with Composite Distributions, 
Signal Processing (2022).



Model-based learning for wireless 
communication: 

Learning-based sparse recovery for 
massive random access



Model-based learning for wireless 
communication

N. Shlezinger, J. Whang, Y. C. Eldar and A. G. Dimakis, "Model-Based Deep Learning: Key Approaches and Design Guidelines," 2021 
IEEE Data Science and Learning Workshop (DSLW), 2021, pp. 1-6, doi: 10.1109/DSLW51110.2021.9523403.

Model-based learning: Hybrid approach
• Deep unfolding 

• Model-aided networks

Model-based signal processing Deep learning

Domain knowledge Data-driven, uses large data sets

Analysis and interpretation Not easy to interpret or analyse



Massive Random Access

• Small fraction of users are active at any given time

• Identify the active users

• Estimate channel corresponding to the active users

• Active users send training sequences of length 𝐿

M-antenna
Base-station 

User 1

User 𝐾

Training Data



Joint Sparse Recovery: 
Activity detection and Channel estimation

Observation
Matrix 𝒀

𝐿 × 𝑀 
Row sparse 

channel matrix 𝑿 
𝐾 × 𝑀 

Noise 𝑾Training sequence 
matrix 𝑨
 𝐿 × 𝐾 

𝒀 = 𝑨 𝑿 + 𝑾

Multiple Measurement 
Vector (MMV) problem



Sparse recovery 

Iterative soft 
thresholding

Approximate 
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passing

Alternating 
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method of 
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Learning-based sparse recovery 

Iterative soft 
thresholding

Approximate 
message 
passing

Alternating 
direction 

method of 
multipliers

Sparse 
Bayesian 
learning

Matching 
Pursuit

ISTA
LISTA
TISTA, MMV-TISTA
L-MMSE-MMV-TISTA

AMP 
OAMP
Vector AMP
L-AMP 
VAMP-net

OMP
CoSaMP

SBL
M-SBL
L-SBL

MMV-ADM
MMV-MADM
L-MMV-MADM



Our Work

• Proposed methods
• MMV-MADM and LMMV-MADM

• Uses deep unfolding, modified cost

• MMV-TISTA and learnt version
• Replaces denoiser with a model-based neural network

• New comparisons
• Performance-complexity trade-offs

A. P. Sabulal, S. Bhashyam, "Joint Sparse Recovery using Deep Unfolding With Application to Massive Random Access," ICASSP 
2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 2020, pp. 5050-
5054. 

U. K. Sreeshma Shiv, S. Bhashyam, C. R. Srivatsa and C. R. Murthy, "Learning-Based Sparse Recovery for Joint Activity Detection 
and Channel Estimation in Massive Random Access Systems," in IEEE Wireless Communications Letters, vol. 11, no. 11, pp. 2295-
2299, Nov. 2022



Deep Unfolding



Technique 1: Deep unfolding

John R. Hershey, Jonathan Le Roux, and Felix Weninger, “Deep unfolding: Model-based inspiration of novel deep architectures,” 
CoRR, vol. abs/1409.2574, 2014. 

Alexios Balatsoukas-Stimming and Christoph Studer, “Deep unfolding for communications systems: A survey and some new 
directions,” arXiv preprint arXiv:1906.05774, 2019.

V. Monga, Y. Li, and Y. C. Eldar, “Algorithm unrolling: Interpretable, efficient deep learning for signal and image processing,” IEEE 
Signal Processing Magazine, vol. 38, no. 2, pp. 18–44, 2021.

Iterative 
algorithm

Trainable 
network

• Each iteration is a layer

• Parameters in each layer untied and trained



Proposed method: LMMV-MADM

MMV-ADM
Modified 

MMV-ADM

Trainable 
network

• MMV-ADM
• Based on alternating direction method of multipliers

• Modification of existing algorithm to help learning
• Back-projected error 

• Unfolding: Significant reduction in training overhead

• Two learning approaches: Supervised, Unsupervised



MMV-ADM

• Alternating direction method

• No matrix inversions          fast, scalable

• Convergence analysis feasible

H. Lu, X. Long, and J. Lv, “A fast algorithm for recovery of jointly sparse vectors based on the alternating direction methods,” in 
Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, 2011, pp. 461–469. 

min
𝑿

𝑿 2,1 +
1

2𝜇
𝒀 − 𝑨𝑿 2



Modified MMV-ADM

• Backprojected LS error instead of LS error
• 𝑨ϯ𝒀 − 𝑨ϯ𝑨𝑿 instead of 𝒀 − 𝑨𝑿

• 𝑨ϯ = 𝑨𝑇 𝑨𝑨𝑇 −1

• Modified algorithm also fast, scalable

• Unfolding results in a easily trainable network 

min
𝑿

𝑿 2,1 +
1

2𝜇
𝑨ϯ𝒀 − 𝑨ϯ𝑨𝑿

2

T. Tirer and R. Giryes, “Back-projection based fidelity term for ill-posed linear inverse problems,” IEEE Transactions on Image 
Processing, vol. 29, pp. 6164-6179, 2020. 

𝑨

𝐿 × 𝐾



Modified MMV-ADM

• Augmented Lagrangian

• 𝑬 = 𝑨ϯ𝒀 − 𝑨ϯ𝑨𝑿

• Initialize 𝑿, 𝜦

𝐿 𝑿, 𝑬, 𝜦
Update residue 𝑬

Update estimate 𝑿

Update multiplier 𝜦

4 scalar parameters to 
choose: 𝜇, 𝛽, 𝛾, 𝜏



Unfolded network

• One iteration of ADM algorithm is one layer

Layer 𝑘

(Scalar parameters 
trained) 

෡𝑿𝑘 ෡𝑿𝑘+1

෡𝑬𝑘 ෡𝑬𝑘+1

𝚲𝑘 𝚲𝑘+1



Training the network

• True 𝑿, 𝒀 pairs available

• Generated using a channel model for training

• Layers trained sequentially

• MSE between layer output ෡𝑿𝑘+1 and true 𝑿 used 
as loss function for training

Supervised

Unsupervised
• True 𝑿, 𝒀 pairs not needed

• Loss function for training 

• 𝜆 ෡𝑿𝑘+1
2,1/𝑝

1/𝑝
+ 𝒀 − 𝑨෡𝑿𝑘+1

𝐹

2



Performance: Phase transition

ICASSP 2020

• 𝐾 = 500, 20 layer 
network, MMV-
MADM with 40 
iterations

• Minimum L/𝐾 for a 
given activity 
probability ρ

• Training and test 
SNR at 30 dB

• Training at ρ = 0.2

• Success if         
NMSE < -20 dB

[3] T. Jiang, Y. Shi, J. Zhang, and K. B. Letaief, “Joint activity detection and channel estimation for 
IoT networks: Phase transition and computation-estimation tradeoff,” IEEE Internet of Things 
Journal, vol. 6, no. 4, pp. 6212–6225, Aug 2019. 



Model-based Neural Network for 
Denoising



Trainable ISTA (TISTA) 

D. Ito, S. Takabe, and T. Wadayama, “Trainable ISTA for sparse signal recovery,” IEEE Transactions on Signal Processing, vol. 67, no. 
12, pp. 3113–3125, June 2019.

Linear 
estimation 
step

Variance 
estimation 
step

• Already uses deep unfolding

• Denoising step based on an approximate model

Denoising step



Technique 2: Model-based neural 
network

• 𝒉𝑡 : Conditionally Gaussian (𝟎, 𝑪𝛿) given parameters δ

• 𝒛𝑡 : Gaussian (𝟎, 𝜎2𝑰) noise

•  δ ~ 𝒑(δ)

• MMSE estimate of 𝒉𝑡 =  ෢𝑾(෡𝑪)𝒚𝑡

𝒚𝑡 = 𝒉𝑡  + 𝒛𝑡 ,  𝒀 = [𝒚1 𝒚2 … 𝒚𝑇]

D. Neumann, T. Wiese and W. Utschick, "Learning the MMSE Channel Estimator," in IEEE Transactions on Signal Processing, vol. 
66, no. 11, pp. 2905-2917, 1 June1, 2018.

෡𝑪 =
𝟏

𝝈𝟐  ෍

𝒕=𝟏

𝑻

𝒚𝑡𝒚𝑡
𝑯

෢𝑾 ෡𝑪 =
׬ exp tr 𝑾𝜹

෡𝑪 + 𝑇 log|𝑰 − 𝑾𝜹| 𝑾𝜹𝒑 δ 𝑑δ

׬ exp tr 𝑾𝜹
෡𝑪 + 𝑇 log|𝑰 − 𝑾𝜹| 𝒑 δ 𝑑δ

𝑾𝜹 = 𝑪𝜹 𝑪𝜹 + 𝜎2𝑰
−1



Model-based neural network

• MMSE estimator of 𝒉𝑡: a two-stage neural network with 
linear layers and soft-max activation function

• Use a trained network for the denoising step
• Parameters learnt from training data 

• Reduces modelling approximation error

෢𝑾 ෡𝑪 =
σ𝒊=𝟏

𝑵 exp tr 𝑾𝜹𝒊
෡𝑪 + 𝑏𝑖 𝑾𝜹𝒊

 𝑝𝑖

σ𝒊=𝟏
𝑵 exp tr 𝑾𝜹𝒊

෡𝑪 + 𝑏𝑖  𝑝𝑖

vec ෢𝑾 ෡𝑪 = 𝑨
exp tr 𝑨𝑇vec(෡𝑪) + 𝒃

𝟏𝑇exp tr(𝑨𝑇vec(෡𝑪)) + 𝒃



Trainable ISTA (TISTA) and modification 

D. Ito, S. Takabe, and T. Wadayama, “Trainable ISTA for sparse signal recovery,” IEEE Transactions on Signal Processing, vol. 67, no. 
12, pp. 3113–3125, June 2019.
D. Neumann, T. Wiese and W. Utschick, "Learning the MMSE Channel Estimator," in IEEE Transactions on Signal Processing, vol. 
66, no. 11, pp. 2905-2917, 1 June1, 2018.

Linear 
estimation 
step

Variance 
estimation 
step

Denoising step



Simulation Results



Performance
• 𝐾 = 500 users

• 12 layer network

• Minimum L/𝐾 for a 
given activity 
probability ρ

• Training and test 
SNR at 30 dB

• Success if         
NMSE < -20 dB

• Correlated channel

𝜌

𝐿/𝐾

Unfolded network needs fewer iterations
Learnt denoiser gives better performance

U. K. Sreeshma Shiv, S. Bhashyam, C. R. Srivatsa and C. R. Murthy, "Learning-Based Sparse Recovery for Joint Activity Detection and 
Channel Estimation in Massive Random Access Systems," in IEEE Wireless Communications Letters, vol. 11, no. 11, pp. 2295-2299, 
Nov. 2022



Robustness

• Robustness study

• 𝐾 = 500, 12 layer 
network

• ρ = 0.1

• Training SNR at 15 dB

• L = 200, M = 4

• Correlated channel 

Robust to differences in training and testing SNR



Comparison with M-SBL

• 500 users, 30 dB, 4 antennas, correlated channel

• M-SBL can perform better with higher complexity 



Comparison with M-SBL

• 500 users, 30 dB, 10 antennas, L/N = 0.3

• Complexity advantage for smaller p 



Summary

• New learning-based sparse recovery methods
• Back-projected error
• Deep unfolding
• Model-based neural network
• Both supervised and unsupervised training

• Massive random access
• Reduction in pilot overhead

• Ongoing work
• Probability of error threshold
• Large scale fading effects and estimation for MMV-TISTA

   Thank you
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