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Odd Arm Identification: Model

Arm 1

Arm 2

Arm K

IID ∼ f1

IID ∼ f2

IID ∼ fK

K arms

K − 1 arms have identical distribution

Odd arm has a different distribution

Choose the arm to observe at each stage

Identify the odd arm

Metrics
I Probability of false detection
I Delay in arriving at the decision
I Switching cost

Applications: Anomaly Detection, Search tasks, Controlled sensing
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Odd Arm Identification: Problem

Objective

Find the policy that minimizes expected cost for a given probability of
false detection constraint

Setting

Distribution of arms belong to the exponential family

f (x |η) = h (x) exp
(
ηTT (x)− A (η)

)
∀x ∈ Rd ,

where η is the vector parameter,
η1: Parameter of the odd arm (unknown),
η2: Parameter of the other arms (unknown)

Probability of false detection, PF ≤ α
Cost(C ) = Delay(τ) + Switching cost(g)
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Related Work

Sequential hypothesis with control
I Chernoff (1959): Sequential design of experiments
I Albert (1961): Composite hypothesis with infinitely many states of

nature

Odd arm identification
I Vaidhiyan & Sundaresan (2017): Poisson observations, artificial prior

Best arm identification
I Garivier & Kaufmann (2016): One-parameter exponential family

This work: Odd arm identification
I Builds on Vaidhiyan & Sundaresan (2017)
I General vector exponential family
I Switching costs
I Same asymptotic optimality

Srikrishna Bhashyam (IIT Madras) Odd Arm Identification BITS 2018 4 / 23



Related Work

Chernoff (1959):
Procedure A

Albert (1961):
Modified

Procedure A

Vaidhiyan & Sun-
daresan (2017):
Modified GLR

This talk:
Modified and
Sluggish GLR

Infinitely many
states of nature

General setting
Odd arm, Poisson

Artificial prior

Vector exponential family

Switching cost
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Exponential family: Useful facts

f (x |η) = h (x) exp
(
ηTT (x)− A (η)

)
∀x ∈ Rd ,

Unified model

Gaussian distribution

Exponential family Poisson distributionGamma distribution

Binomial distribution

Useful parameters and expressions

Dual parameters: η � κ = E [T (X )], Conjugate functions: A(η) � F (κ)

D (η1||η2) := D (f (·|η1)||f (·|η2))

= (η1 − η2)T κ1 − A (η1) + A (η2)

= (κ2 − κ1)T η2 + F (κ1)− F (κ2) .
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Lower Bound and Some Observations

Srikrishna Bhashyam (IIT Madras) Odd Arm Identification BITS 2018 7 / 23



Lower Bound and Interpretation

E [C (π) |ψ] ≥ E [τ |ψ] ≥ − logα

D∗ (i , η1, η2)
as α→ 0

Config. ψ = (i , η1, η2)

Arm 1

Arm i

Arm K

∼ f (.|η2)

∼ f (.|η1)

∼ f (.|η2)

Config. ψ′ = (j , η′1, η
′
2)

Arm 1

Arm j

Arm K

∼ f (.|η′2)

∼ f (.|η′1)

∼ f (.|η′2)

Extract

log

(
1

α

)
units of

information
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Lower Bound and Interpretation

How much information can we get in each slot, on average?

D∗ (i , η1, η2) = max
λ∈P(K)

min
η′1,η

′
2,j 6=i

[λ (i)D
(
η1||η′2

)
+ λ (j)D

(
η2||η′1

)
+ (1− λ (i)− λ (j))D

(
η2||η′2

)
]

Max-min-drift of log-likelihood ratio process between configurations
(i , η1, η2) and (j , η′1, η

′
2)

Minimum over all possible error configurations

Maximum over all IID sampling policies

Expected delay ≥ log(1/α)
D∗
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Simplifications of the lower bound: Exponential family

One-dimensional optimization

D∗ (i , η1, η2) = max
0≤λ(i)≤1

[
λ (i)D (η1||η̃) + (1− λ (i))

K − 2

K − 1
D (η2||η̃)

]
where η̃ = f (κ̃) with

κ̃ = λ̂ (i)κ1 + (1− λ̂ (i))κ2, λ̂ (i) =
λ (i)

λ (i) + (1− λ (i)) K−2
K−1

.

Also, we have λ∗ (i , η1, η2) (j) of the form{
1− λ∗(i)
K − 1

, . . . ,
1− λ∗(i)
K − 1

, λ∗(i),
1− λ∗(i)
K − 1

, . . . ,
1− λ∗(i)
K − 1

}
1 i K
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Nontrivial sampling of all actions

Nontrivial sampling strategy

λ∗ (k, η1, η2) (j) ≥ cK > 0

for all j ∈ 1, 2, . . . ,K and for all (k , η1, η2) such that η1 6= η2

Each arm sampled atleast cK fraction of time independent of true
configuration

Useful to show convergence of parameter estimates

Proof for Poisson case in Vaidhiyan & Sundaresan (2017)

Need to show λ (or λ̂) bounded away from 0 and 1
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Nontrivial sampling of all actions: Exponential family

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

1

2

3

4

D(κ1||κ̃)

rD(κ2||κ̃)

λ̂2 λ̂r λ̂.5

λ̂

Optimal λ̂ satisfies

D(κ1||κ̃) =
K − 2

K − 1
D(κ2||κ̃)

Sufficient to show
λ̂0.5 < 1 and λ̂2 > 0

Further simplification
using Taylor’s theorem
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Nontrivial sampling of all actions: Exponential family

Conjugate functions: A(η) � F (κ)

Sufficient condition

∃ λ̂∗ < 1 such that

1∫
λ̂∗

(1− u)∆κT Hess (F )∆κdu − 1

2

λ̂∗∫
0

u∆κT Hess (F )∆κdu < 0.

Condition proved for Poisson, single parameter Gaussian

Numerically checked for Bernoulli, two-parameter Gaussian
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Proposed Policy: Modified and Sluggish GLR

Srikrishna Bhashyam (IIT Madras) Odd Arm Identification BITS 2018 14 / 23



Proposed Policy: Modified Generalized Likelihood Ratio

Zij (n) := log f̃ (X n,An|H=i)

f̂ (X n,An|H=j)

f̂ (X n,An|H = j):
Maximum likelihood of observations and
actions till time n under H = j

f̃ (X n,An|H = i):
Averaged likelihood (according to the
conjugate prior)

Zi (n) := min
j 6=i

Zij (n)
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Proposed Policy: Estimates of the Expectation parameter

Estimate of odd and non-odd expectation parameters under H = j

κ̂n1 (j) =
Y n
j

Nn
j

and κ̂n2 (j) =
Y n − Y n

j

n − Nn
j

,

where Nn
j =

n∑
t=1

1{At=j}, Y
n
j is the sum of sufficient statistic of arm j up to

time n, i.e.,

Y n
j =

n∑
t=1

T (Xt) 1{At=j},

and Y n =
∑K

j=1 Y
n
j .
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Proposed Policy: Modified and Sluggish GLR (πSM(α, γ))

Estimate parameters under each hypothesis

Modified GLR: Compute Zi (n) for each i

Arm with largest modified GLR: i∗(n) = arg maxi Zi (n)

Stopping Rule: If Zi∗(n)(n) ≥
log
(
K−1
α

)
stop and declare

i∗ (n) as the odd arm location

Sampling Rule: Else sample according to
λ∗ (i∗ (n) , η̂n1 (i∗ (n)) , η̂n2 (i∗ (n))) w.p. γ
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Performance of Proposed Policy
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Performance of Proposed Policy: Stops in finite time

Policy stops in finite time with probability 1

Parameter estimates converge to true values, almost surely

When H = i∗, Test statistic Zi∗(n) has a positive drift

And crosses threshold log(K−1
α ) in finite time, almost surely
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Performance of Proposed Policy: Satisfies false detection
constraint

Policy satisfies the constraint on the probability of false detection α

Threshold = log(K−1
α )

Proof relies on conjugate prior on parameters
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Performance of Proposed Policy: Asymptotically optimal in
total cost

lim sup
L→∞

E [C (πSM (α, γ)) |ψ]

log (L)
≤ 1

D∗ (i , η1, η2)
+

gmaxγ

D∗ (i , η1, η2)
,

where L = 1/α. Proof uses

Convergence of parameter estimates to the actual parameters, almost
surely

Convergence of positive drift of the test statistic to D∗(i , η1, η2) as
α→ 0

Exponential bound on P[Zi (n) < log((K − 1)L)] for large n and L

Choose γ to be arbitrarily close to 0 to approach the lower bound
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Summary

Proposed modified and sluggish GLR for odd arm identification

Asymptotically optimal cost as false detection constraint α→ 0

Generalization of result in Vaidhiyan & Sundaresan (2017)
I Vector exponential family for observations
I Include switching costs

Growth rate of the cost, as both α and γ are driven to 0, is the same
as that without switching costs.

Current Work

Other structures: Best arm identification
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Thank you
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