Asymptotically Optimal Search Policy for Odd Arm Identification¹

Srikrishna Bhashyam

Department of Electrical Engineering Indian Institute of Technology Madras Chennai 600036

BITS 2018

Joint work with Gayathri R. Prabhu, Aditya Gopalan and Rajesh Sundaresan

Srikrishna Bhashyam (IIT Madras)

Odd Arm Identification

Odd Arm Identification: Model

- IID $\sim f_K$

- K arms
- K-1 arms have identical distribution
- Odd arm has a different distribution
- Choose the arm to observe at each stage
- Identify the odd arm
- Metrics
 - Probability of false detection
 - Delay in arriving at the decision
 - Switching cost

Applications: Anomaly Detection, Search tasks, Controlled sensing

Arm K

(3)

Odd Arm Identification: Problem

Objective

Find the policy that minimizes expected cost for a given probability of false detection constraint

Setting

• Distribution of arms belong to the exponential family

$$f(x|\eta) = h(x) \exp\left(\eta^T T(x) - A(\eta)\right) \quad \forall x \in \mathbb{R}^d,$$

where η is the vector parameter,

- η_1 : Parameter of the odd arm (unknown),
- η_2 : Parameter of the other arms (unknown)
- Probability of false detection, $P_F \leq \alpha$
- Cost(C) = Delay(\(\tau\)) + Switching cost(g)

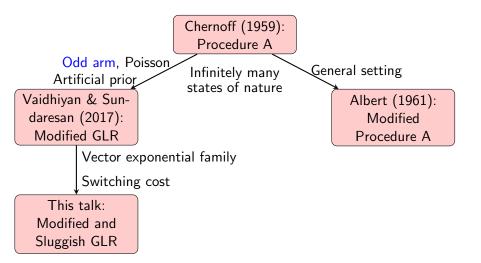
< ロ > < 同 > < 三 > < 三

Related Work

- Sequential hypothesis with control
 - Chernoff (1959): Sequential design of experiments
 - Albert (1961): Composite hypothesis with infinitely many states of nature
- Odd arm identification
 - Vaidhiyan & Sundaresan (2017): Poisson observations, artificial prior
- Best arm identification
 - Garivier & Kaufmann (2016): One-parameter exponential family
- This work: Odd arm identification
 - Builds on Vaidhiyan & Sundaresan (2017)
 - General vector exponential family
 - Switching costs
 - Same asymptotic optimality

()

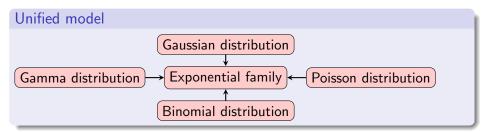
Related Work



3 1 4

Exponential family: Useful facts

$$f(x|\eta) = h(x) \exp\left(\eta^T T(x) - A(\eta)\right) \quad \forall x \in \mathbb{R}^d,$$



Useful parameters and expressions

Dual parameters: $\eta \rightleftharpoons \kappa = E[T(X)]$, Conjugate functions: $A(\eta) \rightleftharpoons F(\kappa)$

$$D(\eta_{1}||\eta_{2}) := D(f(\cdot|\eta_{1})||f(\cdot|\eta_{2}))$$

= $(\eta_{1} - \eta_{2})^{T} \kappa_{1} - A(\eta_{1}) + A(\eta_{2})$
= $(\kappa_{2} - \kappa_{1})^{T} \eta_{2} + F(\kappa_{1}) - F(\kappa_{2}).$

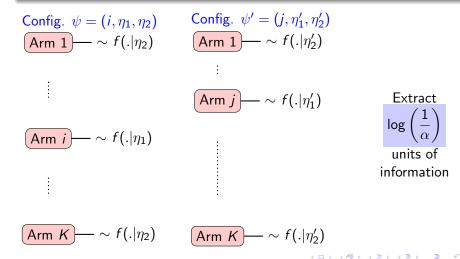
Srikrishna Bhashyam (IIT Madras)

Lower Bound and Some Observations

• • • • • • • • • • • •

Lower Bound and Interpretation

$$E[C(\pi) | \psi] \ge E[\tau | \psi] \ge rac{-\log lpha}{D^*(i, \eta_1, \eta_2)}$$
 as $lpha o 0$



Odd Arm Identification

Lower Bound and Interpretation

How much information can we get in each slot, on average?

$$D^{*}(i, \eta_{1}, \eta_{2}) = \max_{\lambda \in \mathcal{P}(\mathcal{K})} \min_{\eta'_{1}, \eta'_{2}, j \neq i} \qquad [\lambda(i) D(\eta_{1} || \eta'_{2}) + \lambda(j) D(\eta_{2} || \eta'_{1}) + (1 - \lambda(i) - \lambda(j)) D(\eta_{2} || \eta'_{2})]$$

Max-min-drift of log-likelihood ratio process between configurations (i, η_1, η_2) and (j, η_1', η_2')

- Minimum over all possible error configurations
- Maximum over all IID sampling policies

Expected delay
$$\geq \frac{\log(1/\alpha)}{D^*}$$

Simplifications of the lower bound: Exponential family

One-dimensional optimization

$$D^{*}\left(i,\eta_{1},\eta_{2}
ight)=\max_{0\leq\lambda\left(i
ight)\leq1}\left[\lambda\left(i
ight)D\left(\eta_{1}|| ilde{\eta}
ight)+\left(1-\lambda\left(i
ight)
ight)rac{\mathcal{K}-2}{\mathcal{K}-1}D\left(\eta_{2}|| ilde{\eta}
ight)
ight]$$

where $\tilde{\eta} = f\left(\tilde{\kappa}\right)$ with

$$ilde{\kappa} = \hat{\lambda}(i) \kappa_1 + (1 - \hat{\lambda}(i)) \kappa_2, \quad \hat{\lambda}(i) = rac{\lambda(i)}{\lambda(i) + (1 - \lambda(i)) rac{K-2}{K-1}}.$$

Also, we have $\lambda^{*}\left(i,\eta_{1},\eta_{2}
ight)\left(j
ight)$ of the form

$$\left\{\frac{1-\lambda^*(i)}{K-1},\ldots,\frac{1-\lambda^*(i)}{K-1},\lambda^*(i),\frac{1-\lambda^*(i)}{K-1},\ldots,\frac{1-\lambda^*(i)}{K-1}\right\}$$
1
i K

< ∃ > <

Nontrivial sampling of all actions

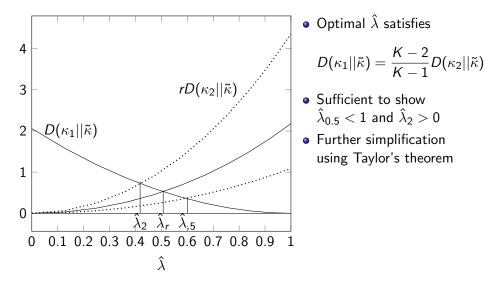
Nontrivial sampling strategy

$$\lambda^{*}\left(k,\eta_{1},\eta_{2}
ight)\left(j
ight)\geq c_{\mathcal{K}}>0$$

for all $j \in 1, 2, \ldots, K$ and for all (k, η_1, η_2) such that $\eta_1 \neq \eta_2$

- Each arm sampled at least $c_{\mathcal{K}}$ fraction of time independent of true configuration
- Useful to show convergence of parameter estimates
- Proof for Poisson case in Vaidhiyan & Sundaresan (2017)
- Need to show λ (or $\hat{\lambda}$) bounded away from 0 and 1

Nontrivial sampling of all actions: Exponential family



Nontrivial sampling of all actions: Exponential family

Conjugate functions: $A(\eta) \rightleftharpoons F(\kappa)$

Sufficient condition

$$\hat{\lambda}^* < 1 \text{ such that}$$

$$\int_{\hat{\lambda}^*}^{1} (1-u)\Delta\kappa^T \operatorname{Hess}(F)\Delta\kappa du - \frac{1}{2} \int_{0}^{\hat{\lambda}^*} u\Delta\kappa^T \operatorname{Hess}(F)\Delta\kappa du < 0.$$

• Condition proved for Poisson, single parameter Gaussian

• Numerically checked for Bernoulli, two-parameter Gaussian

5

Proposed Policy: Modified and Sluggish GLR

< ∃ > <

Proposed Policy: Modified Generalized Likelihood Ratio

$$\left(Z_{ij}\left(n
ight):=\lograc{ ilde{f}\left(X^{n},\mathcal{A}^{n}|H=i
ight)}{\hat{f}\left(X^{n},\mathcal{A}^{n}|H=j
ight)}
ight)$$

$$\hat{f}(X^n, A^n | H = j)$$
: Maximum likelihood of observations and
actions till time *n* under $H = j$

 $\tilde{f}(X^n, A^n | H = i)$: Averaged likelihood (according to the conjugate prior)

$$\left(Z_{i}\left(n\right):=\min_{j\neq i}Z_{ij}\left(n\right)\right)$$

Srikrishna Bhashyam (IIT Madras)

▶ < ∃ ▶ < ∃</p>

Proposed Policy: Estimates of the Expectation parameter

Estimate of odd and non-odd expectation parameters under H = j

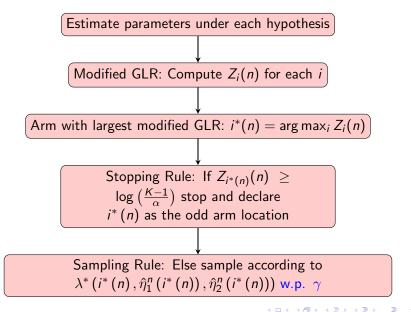
$$\hat{\kappa}_1^n(j) = rac{Y_j^n}{N_j^n}$$
 and $\hat{\kappa}_2^n(j) = rac{Y^n - Y_j^n}{n - N_j^n}$,

where $N_j^n = \sum_{t=1}^n \mathbb{1}_{\{A_t=j\}}$, Y_j^n is the sum of sufficient statistic of arm j up to time n, i.e.,

$$Y_j^n = \sum_{t=1}^n T(X_t) \mathbf{1}_{\{A_t=j\}},$$

and $Y^n = \sum_{j=1}^K Y_j^n$.

Proposed Policy: Modified and Sluggish GLR $(\pi_{SM}(\alpha, \gamma))$



Performance of Proposed Policy

Image: A matrix

→ Ξ →

Performance of Proposed Policy: Stops in finite time

Policy stops in finite time with probability 1

- Parameter estimates converge to true values, almost surely
- When $H = i^*$, Test statistic $Z_{i^*}(n)$ has a positive drift
- And crosses threshold $log(\frac{K-1}{\alpha})$ in finite time, almost surely

Performance of Proposed Policy: Satisfies false detection constraint

Policy satisfies the constraint on the probability of false detection $\boldsymbol{\alpha}$

- Threshold = $\log(\frac{K-1}{\alpha})$
- Proof relies on conjugate prior on parameters

Performance of Proposed Policy: Asymptotically optimal in total cost

$$\limsup_{L \to \infty} \frac{E[C\left(\pi_{\mathcal{SM}}\left(\alpha,\gamma\right)\right)|\psi]}{\log\left(L\right)} \leq \frac{1}{D^{*}\left(i,\eta_{1},\eta_{2}\right)} + \frac{g_{\max}\gamma}{D^{*}\left(i,\eta_{1},\eta_{2}\right)},$$

where $L = 1/\alpha$. Proof uses

- Convergence of parameter estimates to the actual parameters, almost surely
- Convergence of positive drift of the test statistic to $D^*(i,\eta_1,\eta_2)$ as $\alpha \to 0$
- Exponential bound on $P[Z_i(n) < \log((K-1)L)]$ for large n and L

Choose γ to be arbitrarily close to 0 to approach the lower bound

Summary

- Proposed modified and sluggish GLR for odd arm identification
- Asymptotically optimal cost as false detection constraint lpha
 ightarrow 0
- Generalization of result in Vaidhiyan & Sundaresan (2017)
 - Vector exponential family for observations
 - Include switching costs
- Growth rate of the cost, as both α and γ are driven to 0, is the same as that without switching costs.

Current Work

• Other structures: Best arm identification

Thank you

http://www.ee.iitm.ac.in/~skrishna/

Supported by DST

Srikrishna Bhashyam (IIT Madras)

Odd Arm Identification

★ ∃ →