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What is stochastic geometry?

Stochastic geometry is the study of random spatial patterns

I Point processes

I Random tessellations

I Stereology

Applications

I Astronomy

I Communications

I Material science

I Image analysis and stereology

I Forestry

I Random matrix theory
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Application to wireless networks

I Interference is a major limitation

I Networks are getting heterogeneous and decentralized
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Outline

* Primer on Point Processes

* Ad hoc Networks

* Cellular Networks

* Heterogeneous Networks
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Primer on Point Processes

What is a spatial point process?

Let N be the set of all sequences φ ⊂ R2 satisfying

1. (Finite) Any bounded set A ⊂ R2 contains �nite number of points.

2. (Simple) xi 6= xj if i 6= j .

De�nition

A point process1in R2 is a random variable taking values in the space N.

A simple representation: Φ =
∑

i δXi

Notation:

1. Point process is denoted by Φ; An instance of the point process is
denoted by φ

2. Number of points of the point process in a set A ⊂ R2: Φ(A)

1
D.J. Daley, D. Vere-Jones , An introduction to the theory of point processes, Vol 1 and 2, Springer
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Primer on Point Processes

Example 1: An interesting but trivial point process

1. Contains only one point

2. The random point x is uniformly
distributed in a bounded set A.

Uniform distribution

Let B ⊂ A

P(x ∈ B) =
|B|
|A|

,

where |A| denotes the area of the set A.

Caveat: De�ned only on bounded
set, i.e., |A| <∞.
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Primer on Point Processes

Example 2: Binomial point process (BPP)

A BPP on a set A is the superposition of N
independent uniformly distributed points on
the set A.

Let B ⊂ A, then P(Φ(B) = k) =(
N

k

)(
|B|
|A|

)k (
1− |B|
|A|

)N−k
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Primer on Point Processes

Other interesting examples
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Determinantal point
process (eigenvalues of a
Gaussian matrix)
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Primer on Point Processes

Characterization of a point process

Given two point processes, is there a simple way to see if both of them are
equivalent?

A simple point process Φ is determined by its void probabilities over all
compact sets, i.e., P(Φ(K ) = 0) for K ⊂ R2 and compact.

I This means that two point processes are equivalent if they have the
same void probability distribution (for all sets).
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Primer on Point Processes

Stationary point processes

De�nition (Stationary point process)

A point process is stationary if its distribution is invariant with respect to
translations.

I The point process looks statistically similar from any point in space.

I BPP is not a stationary point process.

I A stationary point process cannot be de�ned on a subset of R2

The density of a stationary point process Φ is de�ned as

E[Φ(B)]

|B|
, B ⊂ R2.

The RHS does not depend on the particular choice of the set B .
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Primer on Point Processes

Stationary Poisson point process (PPP)

1. The most widely used model for
spatial locations of nodes

I Most amicable to analysis
I "Gaussian of point processes"

2. No dependence between node
locations

3. Random number of nodes

4. Can be de�ned on the entire
plane

I Limiting distribution of a BPP
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Primer on Point Processes

PPP: Formal de�nition

A stationary Poisson point process Φ of density λ is characterized by

1. The number of points in a bounded
set A ⊂ R2 has a Poisson

distribution with mean λ|A|, i.e.,

P(Φ(A) = n) = exp(−λ|A|)(λ|A|)n

n!

2. The number of points in disjoint
sets are independent, i.e., for
A ⊂ R2, B ⊂ R2 and A ∩ B = ∅,

Φ(A) ⊥ Φ(B) −10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10
PPP of density 2

A

B

A stationary PPP is completely characterized by a single number λ.
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Primer on Point Processes Poisson point process

Properties of PPP

Lemma

The density of the PPP (as de�ned in previous slide) is λ.

Proof: Let A ⊂ R2. Then

E[Φ(A)] =
∞∑
n=0

n exp(−λ|A|)(λ|A|)n

n!

= λ|A|,

which follows from the mean of a Poisson random variable. Hence

E[Φ(A)]

|A|
= λ.

Observe that the above expression does not depend on the set A.
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Primer on Point Processes Poisson point process

Properties...

Lemma

Let A ⊂ R2. Conditioned on the number of points Φ(A), the points are
independently and uniformly distributed in the set A, i.e., the points form a

BPP.

Proof: We consider the void probability of a set K ⊂ A.

P(Φ(K ) = 0|Φ(A) = n) =
P(Φ(K ) = 0 ∩ Φ(A) = n)

P(Φ(A) = n)

=
P(Φ(K ) = 0)P(Φ(A \ K ) = n)

P(Φ(A) = n)

=
e−λ|K |eλ|A\K |(λ|A \ K |)n/n!

eλ|A|(λ|A|)n/n!

=
|W \ K |n

|A|n
=

(
1− |K |
|A|

)n

.

A, Φ(A) = n

K
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Primer on Point Processes Poisson point process

Simulation of a PPP

How to simulate a PPP of density λ on A = [−L, L]2?

1. The number of points in the set A is a Poisson random variable with
mean λ|A|.

2. Conditioned on the number of points, the points are uniformly
distributed as a BPP.

Matlab code

N = poissrnd(λ|A|)
Points = unifrnd(−L, L,N, 2)
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Primer on Point Processes Poisson point process

Distance properties of a PPP

First contact distribution

The CCDF of the distance of the nearest point of the process from the
origin denoted by D is P(D ≥ r) = exp(−λπr2).

Proof:

P(D ≥ r) = P(B(o, r) is empty )

= exp(−λ|B(o, r)|)
= exp(−λπr2)

r

Hence the PDF equals fN(r) = 2λπr exp(−λπr2). The average distance is

E[D] =

∫ ∞
0

r2λπrfN(r)dr =
1

2
√
λ
.
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Primer on Point Processes Poisson point process

N-th closest point

The CDF2of the N-th closest point to the origin equals

P(Dn ≥ r) =
n−1∑
k=0

e−λπr
2 (λπr2)k

k!
=

Γ(n, λπr2)

(n − 1)!

The average distance to the N-th closest point equals

E[Dn] =
Γ(n + 1

2)
√
πλΓ(n)

∼
√

n

πλ

2M. Haenggi, "On Distances in Uniformly Random Networks," IEEE Transactions on

Information Theory, vol. 51, pp. 3584-3586, Oct. 2005
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Primer on Point Processes Poisson point process

Sums over PPP

Lemma (Campbells theorem)

Let Φ be a PPP of density λ and f (x) : R2 → R+.

E[
∑
x∈Φ

f (x)] = λ

∫
R2

f (x)dx

Proof: We have

E[
∑
x∈Φ

f (x)] = lim
R→∞

E[
∑

x∈Φ∩B(o,R)

f (x)].

Let n = Φ(B(o,R)). Conditioning on the number of points n,

E

 ∑
x∈Φ∩B(o,R)

f (x)

 = En

E
 ∑
x∈Φ∩B(o,R)

f (x)
∣∣∣n

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Primer on Point Processes Poisson point process

Since conditioned on the number of points, the points are i.i.d uniform

E[
∑

x∈Φ∩B(o,R)

f (x)|n] = n

∫
B(o,R)

f (x)

|B(o,R)|
dx .

Averaging over n

E[
∑

x∈Φ∩B(o,R)

f (x)] = E[n]

∫
B(o,R)

f (x)

|B(o,R)|
dx

As E[n] = λ|B(o,R)|, and tending R →∞ we obtain the result.

Let g(x , y) : R2 × R2 → R+. Then3

E
6=∑

x ,y∈Φ

g(x , y) = λ2
∫
R2

∫
R2

g(x , y)dxdy .

3D. Stoyan, W. Kendall, and J. Mecke, "Stochastic Geometry and Its
Applications", 2nd ed. John Wiley and Sons, 1996
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Primer on Point Processes Poisson point process

Example: Mean and variance of interfernece
Let the transmitters be distributed as a PPP Φ of density λ.

De�nition (Interfernce)

The interfernce (sum power) at location
y ∈ R2 is

I (y) =
∑
x∈Φ

`(x − y),

where `(x) is the path-loss function.
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Mean of interference: By Campbell theorem,

E[I (y)] = E[
∑
x∈Φ

`(x − y)] = λ

∫
R2

`(x − y)dx = λ

∫
R2

`(x)dx
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Primer on Point Processes Poisson point process

Variance of interference:

E[I (y)2] = E

(∑
x∈Φ

`(x − y)

)2
 = E

[(∑
x∈Φ

`(x − y)

)(∑
z∈Φ

`(z − y)

)]

= E[
∑
x∈Φ

`(x − y)2] + E[

6=∑
x ,z∈Φ

`(x − y)`(z − y)]

= λ

∫
R2

`(x − y)2dx + λ2
∫
R2

∫
R2

`(x − y)`(z − y)dxdz

= λ

∫
R2

`(x)2dx + (λ

∫
R2

`(x)dx)2

Hence variance equals,

var(I (y)) = λ

∫
R2

`(x)2dx .
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Primer on Point Processes Poisson point process

Products over PPP

Lemma (Probability generating functional (PGFL))

Let Φ be a PPP of density λ and f (x) : R2 → [0, 1] be a real valued

function. Then

E

[∏
x∈Φ

f (x)

]
= exp

(
−λ
∫
R2

(1− f (x))dx

)
.

Proof: We prove the result for Ψr = Φ ∩ B(o, r). Observe that Ψr is a
PPP with number of points n distributed as a Poisson random variable
with mean λπr2.

E

∏
x∈Ψr

f (x)

 = EnE

∏
x∈Ψr

f (x)
∣∣∣n


= EnE[f (x)]n
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Primer on Point Processes Poisson point process

But E[f (x)] = 1
πr2

∫
B(o,r) f (x)dx . Hence

E

[∏
x∈Ψr

f (x)

]
= En

[(
1

πr2

∫
B(o,r)

f (x)dx

)n]
.

Let z > 0. Let n be a Poisson random variable with mean a. Then

E[zn] = exp(−a(1− z)).

E

∏
x∈Ψr

f (x)

 = exp

(
−λπr2

(
1− 1

πr2

∫
B(o,r)

f (x)dx

))

= exp

(
−λ
∫
B(o,r)

(1− f (x))dx

)
.
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Primer on Point Processes Poisson point process

Application of PGFL: Laplace transform of interference

E[exp(−sI (y))] = E

[
exp

(
−s
∑
x∈Φ

`(x − y)

)]
.

This can be rewritten as,

E[exp(−sI (y))] = E

[∏
x∈Φ

exp (−s`(x − y))

]
.

Using the PGFL,

E[exp(−sI (y))] = exp

(
−λ
∫
R2

1− e−s`(x−y)
dx

)
.

Substituting x − y → x , we have

LI (s) = exp

(
−λ
∫
R2

1− e−s`(x)
dx

)
.
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Primer on Point Processes Transformations of PPP

Transformations of PPP: Independent Thinning

Let Φ be a PPP of density λ

1. A node x ∈ Φ is coloured red with probability p and blue with
probability 1− p.

2. Let Φr denote the red point process and Φb denote the blue point
process. So we have Φ = Φr ∪ Φb.

Can be used to model ALOHA MAC protocol.

Lemma (Thinning)

1. Φr is a PPP of density λp

2. Φb is a PPP of density λ(1− p)

3. Φr is independent of Φb.

Proof: Look at void probabilities of Φr and Φb.
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Primer on Point Processes Transformations of PPP

Matern hard-core process: Dependent thinning

1. Begin with a PPP Φ of density λ.

2. To each x ∈ Φ, associate a mark
mx ∼ U[0, 1] independent of every other
point.

3. A node x ∈ Φ selected if it has the lowest
mark among all the points in the ball
B(x ,R).

Ψ = {y : y ∈ Φ,my ≤ mx , ∀x ∈ B(y ,R)∩Φ}

A minimum distance process for modelling CSMA MAC.
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Primer on Point Processes Transformations of PPP

Density of Matern hard-core process
A node x ∈ φ is retained with probability

p = P(mx ≤ my , ∀y ∈ B(x ,R) ∩ Φ).

I Let the mark of x be equal to t ∈ [0, 1].
I Let n represent the number of points of Φ in B(x ,R).

I n ∼ Poi(λπR2).
I Conditioned on the mark t, the probability that x is selected equals

E[(1− t)n] = exp(−λπR2t).
I Averaging over t,

p =

∫ 1

0

exp(−λπR2t)dt =
1− exp(−λπR2)

λπR2
.

So the �nal density of the process equals λm = pλ.

λm =
1− exp(−λπR2)

πR2
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Primer on Point Processes Reduced Palm probability

Conditioning: Reduced Palm probability

I Notion of a typical point, i.e., conditioning on the existence of a node
at a particular location

Nearest-neighbour distribution function

The distance of the nearest neighbour from a "typical" point.

D(r) = P(Φ(B(o, r) = 1|o ∈ Φ)

= Po(Φ(B(o, r) = 1)

= P!o(Φ(B(o, r) = 0)

Probability conditioned on there being a point at the origin (but not
counting it).
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Primer on Point Processes Reduced Palm probability

A spatial average interpretation

The reduced Palm probability can also be
interpreted as a spatial average

P!o(Y ) = lim
R→∞

E
∑

x∈Φ∩B(o,R)

P(Φ−x \ {x} ∈ Y )

λπR2
.
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Palm distribution of PPP: Slivnyak theorem

P!o = P,

i.e., reduced Palm distribution of a PPP equals the original distribution.

Hence for a PPP, a new point can be added to the process without
disturbing other points of the process.
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Primer on Point Processes Reduced Palm probability

Campbell Mecke Theorem

Let f (x , φ) : R2 × N→ [0,∞] be a real valued function,

E[
∑
x∈Φ

f (x ,Φ \ {x})] = λ

∫
R2

E!o [f (x ,Φ)]dx .

Hence for a PPP,

E[
∑
x∈Φ

f (x ,Φ \ {x})] = λ

∫
R2

E[f (x ,Φ)]dx .
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Ad hoc Networks

Analysis of Ad Hoc Networks

* Primer on Point Processes

* Ad hoc Networks
� SINR analysis
� Interfernece correlation

* Cellular Networks

* Heterogeneous Networks
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Ad hoc Networks SINR analysis

Dipole model

I The transmitters are distributed as
a PPP Φ of density λ

I Each transmitter has a receiver at a
distance d in a random direction

I Not part of the process Φ.

I Path loss function is denoted by
`(x)

1. Examples: `(x) = ‖x‖−α,
`(x) = min{1, ‖x‖−α}.

2. α > 2
3. Path loss between nodes x and y

is `(x − y).
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Ad hoc Networks SINR analysis

System model

I All nodes transmit at the same power

I TX has Nt transmit antenna

I RX has Nr receive antenna

I Fading between any two nodes is i.i.d Rayleigh

1. The fading power is exponentially distributed with unit mean.
2. The fading power between nodes is denoted by hxy

I P(hxy ≥ z) = exp(−z)

What is the performance of a "typical" link?

3F. Baccelli, B. Blaszczyszyn, P. Muhlethaler, "An ALOHA protocol for multihop

mobile wireless networks," Information Theory, IEEE Transactions on , vol.52, no.2, pp.

421- 436, Feb. 2006
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Ad hoc Networks SINR analysis

SISO ad hoc network: Nt = Nr = 1

Typical link: By Slivnyaks theorem, we can add a new reference transmitter
with its receiver at the origin

The Signal-to-interference-noise ratio (after processing) between the
receiver at the origin and its corresponding transmitter is

SINR =
hd−α

σ2 + I (o)
,

where I (o) is the interference at receiver
at origin

I (o) =
∑

y∈Φ\{x}

hyo‖y‖−α.

How to compute P(SINR ≥ θ) for the
reference link? −6 −4 −2 0 2 4 6
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Ad hoc Networks SINR analysis

SINR distribution

ps(θ, λ) = P(SINR(o) > θ) = P
(

hd−α

σ2 + I (o)
≥ θ
)

= P
(
h ≥ dαθ(σ2 + I (o))

)
= E exp(−dαθ(σ2 + I (o)))

= exp(−dαθσ2)E exp(−dαθI (o))︸ ︷︷ ︸
T1=LI (o)(dαθ)

Observe that T1 is the Laplace transform of I (o) evaluated at s = dαθ.
We now evaluate the Laplace transform of interference

LI (o)(s) = E exp(−s
∑
y∈Φ

hyo‖y‖−α)

= E
∏
y∈Φ

exp(−shyo‖y‖−α)
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Laplace transform of interference

LI (o)(s) = E
∏
y∈Φ

exp(−shyo‖y‖−α)

(a)
= E

∏
y∈Φ

Ehyo exp(−shyo‖y‖−α)

(b)
= E

∏
y∈Φ

1

1 + s‖y‖−α

(a) follows from the independence of the fading random variables and (b)
follows from the Laplace transform of an exponential random variable.

Recall PGFL of a PPP

E
∏
y∈Φ

f (x) = exp

(
−λ
∫
R2

1− f (x)dx

)
.
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Using the PGFL of a PPP,

LI (o)(s) = exp

(
−λ
∫
R2

1− 1

1 + s‖y‖−α
dx

)
= exp

(
−λ
∫
R2

1

1 + s−1‖y‖α
dx

)
= exp(−λs2/αC (α)),

where C (α) = 2π2

α sin(2π/α) .

The CCDF of SINR is

ps(θ, λ) = P(SINR(o) > θ) = exp(−dαθσ2)LI (o)(dαθ)

= exp(−dαθσ2)︸ ︷︷ ︸
Noise

exp(−λd2θ2/αC (α))︸ ︷︷ ︸
Interference
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Multiple antenna systems:
Post-processing SIR depends on the processing at the receiver

I Maximal-ratio combining (MRC), Nt = 1,Nr = n : Let hx denote
1× n channel vector from a node x to the receiver at the origin. The
received signal is

Y =
hod

−α/2
√
n

ao +
∑
x∈Φ

hx‖x‖−α/2√
n

ax ,

where ax are the transmitted symbols. Hence the received SIR after
multiplying with hHo is

SIR =
1
n |h

H
o ho |2d−α

1
n

∑
x∈Φ |hHo hx |2‖x‖−α

=
‖ho‖2d−α∑

x∈Φ |
hHo
‖ho‖hx |

2‖x‖−α

I ‖ho‖2 is χ2 distributed with 2n degrees of freedom.

I | hHo
‖ho‖hx |

2 is exponentially distributed with unit mean.
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I Zero forcing receiver (ZF), Nt = n,Nt = n, # streams =n. Looking
at the k-th stream the received vector is

√
nYk = ho(k)d−α/2aok+

n∑
i=1,i 6=k

ho(i)d−α/2aoi+
∑
x∈Φ

n∑
i=1

hx(n)‖x‖−α/2axi ,

hx(i) is the i-th column of the channel matrix between the node x and
the tagged receiver. Multiplying with the v that is orthogonal to the
vectors ho(i), i 6= k the received SINR is

SIR =
Sd−α∑

x∈Φ Sx‖x‖−α

1. S is exponentially distributed.
2. Sx is also exponentially distributed.
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The post process signal-to-interference ratio (after processing) is generally
of the form

SIR =
Sd−α

σ2 + I (o)
,

where I (o) =
∑

y∈Φ\{x} ĥyo‖y‖−α is the interference at receiver at origin.
Let the CCDF of S be

F (x) =
n∑

k=0

akx
k exp(−bkx)

For example

1. When S is exponentially distributed, n = 1, a1 = 1 and b1 = 1

2. When S is χ2 with 2m degrees of freedom, n = m − 1, ak = 1
k! and

bk = 1.
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Laplace trick

ps(θ, λ) = P
(
Sd−α

I (o)
≥ θ
)

= P (S ≥ θdαI (o))

= EF (S ≥ θdαI (o)) =
n∑

k=0

akE
[
(θdαI (o))k exp(−bkθdαI (o))

]
=

n∑
k=0

ak(θdα)kE
[
I (o)k exp(−bkθdαI (o))

]

E[xke−x ] = E
[

(−1)k
d
k

dsk
e−xs

∣∣∣
s=1

]
= (−1)k

d
k

dsk
LX (s)

∣∣∣
s=1

Hence,

ps(θ, λ) =
n∑

k=0

akθ
kdkα(−1)k

d
k

dsk
LI (o)(s)

∣∣∣
s=bkθdα
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Summary: Key steps in the SINR evaluation

ps(θ, λ) = P
(
h ≥ dαθ(σ2 + I (o))

) (a)
= E exp(−dαθ(σ2 + I (o)))

= exp(−dαθσ2)E exp(−dαθI (o))

= exp(−dαθσ2)E
∏
y∈Φ

Lh(dαθ‖y‖−α)

= exp(−dαθσ2)E
∏
y∈Φ

1

1 + dαθ‖y‖−α

(b)
= exp(−dαθσ2)exp(−λd2θ2/αC (α))

1. The distribution of h being exponential in (a).

2. The distribution of the fading between the interferers and the tagged
receiver is not crucial.

3. Using PGFL in (b).
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Interference distribution

The Laplace transform of interference I =
∑

y∈Φ hyo‖y‖−α is given by

LI (s) = exp(−λs2/αC (α)), α > 2.

I The Laplace transform of an alpha stable distribution with parameter
2/α.

1. Heavy tailed distribution. Not Gaussian4.
2. No closed form expression for CDF
3. Integer moments don't exist.

I E[I ] = λ
∫
R2 ‖x‖

−α
dx =∞

I An artefact of the singularity of path loss model `(x) = ‖x‖−α at

x = o.

I I =
∑

y∈Φ hyo‖y‖−α is also referred as shot noise (SN) process.

4R.K. Ganti and M. Haenggi. "Interference in ad hoc networks with general

motion-invariant node distributions", ISIT, 2008
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Tail bounds on interference5

Evaluate the CCDF of P(I ≥ y), where I =
∑

y∈Φ hyo‖y‖−α.

I Divide the point process into two sets

Φy = {x ∈ Φ, hxo‖x‖−α > y}

Φc
y = {x ∈ Φ, hxo‖x‖−α ≤ y}

I Lower bound:

P(I ≥ y) = P(IΦy + IΦc
y
≥ y)

≥ P(IΦy ≥ y) = 1− P(IΦy ≤ y)

= 1− P(Φy = ∅)

4
S. Weber, X. Yang, J. G. Andrews and G. de Veciana, "Transmission Capacity of Wireless Ad Hoc Networks

with Outage Constraints", IEEE Transactions on Information Theory, Vol. 51, No. 12, Dec. 2005
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I

P(Φy = ∅) = E
∏
x∈Φ

1(hxo‖x‖−α < y)

= E
∏
x∈Φ

Ehxo1(hxo‖x‖−α < y) = E
∏
x∈Φ

1− e−y‖x‖
α

= exp

(
−λ
∫
R2

e−y‖x‖
α
dx

)
= exp

(
−λy−2/απΓ(1 + 2/α)

)
I Upper bound

P(I ≥ y) = P(I ≥ y |IΦy > y)P(IΦy > y) + P(I ≥ y |IΦy ≤ y)P(IΦy ≤ y)

= P(IΦy > y) + P(I ≥ y |IΦy ≤ y)P(IΦy ≤ y)

= 1− P(Φy = ∅) + P(I ≥ y |IΦy ≤ y)P(Φy = ∅)
= 1− (1− P(I ≥ y |IΦy ≤ y))P(Φy = ∅)
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I Using Markov inequality

P(I ≥ y |IΦy ≤ y) = P(I ≥ y |Φy = ∅)

≤ E[I ≥ y |Φy = ∅]
y

=
1

y
E
∑
x∈Φ

hxo‖x‖−α1(hxo‖x‖−α ≤ y)

=
λ

y

∫
R2

‖x‖−αE[hxo1(hxo‖x‖−α ≤ y)]dx

=
λ

y

∫
R2

‖x‖−α
∫ y‖x‖α

0

he−hdhdx

=
2πΓ (1 + 2/α)

2− α
y−2/α

1−e−λy−2/αE[h2/α] ≤ P(I ≥ y) ≤ 1−

(
1− 2πE[h2/α]

2− α
y−2/α

)
e−λy

−2/αE[h2/α]
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Interference is heavy tailed

Lemma

When path loss is given by `(x) = ‖x‖−α, interference is heavy tailed

P(I ≥ y) ∼ λy−2/αE[h2/α], y →∞

Proof: We have

1−e−λy−2/αE[h2/α] ≤ P(I ≥ y) ≤ 1−

(
1− 2πE[h2/α]

2− α
y−2/α

)
e−λy

−2/αE[h2/α].

Use exp(−x) ∼ 1− x , x → 0.
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Is Gaussian modelling of interference appropriate?
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Transmission capacity(TC)

Let ε ∈ (0, 1). TC is de�ned as

TC (ε) = (1− ε) arg maxλ>0{ps(θ, λ) > 1− ε}

1. arg maxλ>0{ps(θ, λ) > 1− ε} is the maximum density of transmitting
nodes that can be supported for an outage constraint ε.

2. 1− ε fraction of these nodes are successful.

3. Hence TC measures the maximum spatial intensity of successful
transmissions per unit area for a given outage capacity.

4. Can be related to area spectral e�ciency (ASE) by multiplying with
log2(1 + θ).
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Transmission capacity of the PPP dipole network

Lemma

When σ2 ≈ 0, the TC of a PPP dipole network with Nt = Nr = 1 is

TC (ε) =
(1− ε)

d2C (α)θ2/α
ln

(
1

1− ε

)
.

Proof: We have,
p(θ, λ) = exp(−λd2θ2/αC (α))

Observe that p(θ, λ) increases with λ. Hence solving for

p(θ, λ) > 1− ε,

we obtain the result.
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Sphere packing interpretation of TC
When ε ≈ 0, by Taylor series expansion, ln

(
1

1−ε

)
= ε+ o(ε). Hence

TC (ε) =
(1− ε)

d2C (α)θ2/α
ln

(
1

1− ε

)
∼ ε

d2C (α)θ2/α
=

1

π
(
d
√

2π
εα sin(2π/α)

)2 .

Interpretation (heuristic)

Hence each transmission approximately requires an interference free disc of
radius

R = d

(
2π

εα sin(2π/α)

)1/2

.

I The disc radius increases as 1√
ε
.

I The disc radius decreases with increasing α
I Higher path loss exponent → better packing.
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Transmission capacity for other schemes when ε ≈ 0

I SISO: TC (ε) = ε
d2C(α)θ2/α

I MIMO: MRC with n receive antenna

n2/αε

d2C (α)θ2/α
≤ TC (ε) ≤ n2/αΓ(1− 2/α)ε

d2C (α)θ2/α

I MIMO eigen-beamforming: m transmit and n receive

max{n,m}2/αε
d2C (α)θ2/α

≤ TC (ε) ≤ (nm)2/αΓ(1− 2/α)ε

d2C (α)θ2/α

Can be used to analyse a multitude of systems with interference.

A. M. Hunter, J. G. Andrews and S. P. Weber, "Transmission Capacity of Ad Hoc Networks with Spatial Diversity",

IEEE Transactions on Wireless Communications, Vol. 7, No. 12, pp. 5058-71, Dec. 2008
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Spatial and temporal correlation of interference in PPPs
with ALOHA

I At each time instant each node
transmits with probability p

I Let Φk denote the set of active
transmitters at time k . i.e.,

Φk = {x ; x ∈ Φ, x is on at time k}

I The interference is

I (Φk , z) =
∑
x∈Φk

hxz [k]`(x− z)

I We assume that the fading is
indpendent across space and
time.
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Spatial and temporal correlation of interference in PPPs
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Φk = {x ; x ∈ Φ, x is on at time k}

I The interference is

I (Φk , z) =
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Spatio-temporal correlation coe�cient

Correlation coe�cient, ρX ,Y =
cov(X ,Y )

σXσY
.

Lemma

The spatio-temporal correlation coe�cient of the interferences I (Φm, u)
and I (Φn, v),m 6= n for ALOHA and path loss functions `(x) satisfying∫
R2 `(x)dx <∞, is

ζ(u, v) =
p
∫
R2 `(x)`(x − ‖u − v‖)dx
E[h2]

∫
R2 `2(x)dx

.

Proof: Follows6from Campbell's theorem.

6
R. K. Ganti and M. Haenggi. "Spatial and temporal correlation of the interference in ALOHA ad hoc

networks", IEEE Communications Letters, 13(9):631 -633, September 2009
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When u = v , the temporal correlation is
equal to

p

E[h2]
.

Hence for Nakagami-m fading, it is
equal to pm

1+m .
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lim
ε→0
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Link formation delay

I A TX at x can connect to a RX at y if

SIR(x , y) =
hxy [k]`(d)

I (Φk , y)
≥ θ

I ALOHA MAC with access probability p

I D: No of attempts required for a connection to form.
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Link formation delay

I A TX at x can connect to a RX at y if

SIR(x , y) =
hxy [k]`(d)
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≥ θ
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Link formation delay

I A TX at x can connect to a RX at y if

SIR(x , y) =
hxy [k]`(d)

I (Φk , y)
≥ θ

I ALOHA MAC with access probability p

I D: No of attempts required for a connection to form.
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Link formation delay

I A TX at x can connect to a RX at y if

SIR(x , y) =
hxy [k]`(d)

I (Φk , y)
≥ θ

I ALOHA MAC with access probability p

I D: No of attempts required for a connection to form.
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What is the average delay E[D] ?
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Average delay E[D]: Neglecting interference correlation

Recall
I ALOHA corresponds to independent thinning

I Φm (the set of transmitters at time m) is a PPP of density λp.

I The probability of link formation in a PPP network with density pλ is

ps(θ, pλ) = exp(−pλd2θ2/αC (α))

1. At each time instant a link is formed with probability ps(θ, λ)
independent of every other time

2. So the delay D is a geometric random variable with mean 1
ps(θ,λ) .

E[D] = exp(pλd2θ2/αC (α))

3. Observe that the delay increases with p.
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Average delay E[D]: With interference correlation

I Let Ek denote the event h[k]`(d)
I (Φk ,o) ≥ θ

I Then P(D > k) = P(E c
1 ∩ E c

2 ∩ ... ∩ E c
k ) Fail for k times

I E[D] =
∑∞

k=0 P(D > k) Average of a positive random variable
I E[D] = EΦE[D|Φ]] = EΦ[

∑∞
k=0

P(D > k |Φ)] Conditioning on Φ

I P(D > k |Φ) = P(E c
1 |Φ)P(E c

2 |Φ) . . .P(E c
k |Φ) Conditional

Independence

I Probability that a link is not formed at time m is

P(E c
m|Φ) = P

(
h[m]d−α

I (Φm, y)
≤ θ

∣∣∣ Φ

)
= 1− E[exp (−dαθI (Φm, o)) |Φ]︸ ︷︷ ︸

T1
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Ad hoc Networks Interfernece correlation

I Two sources on randomness: Fading and ALOHA MAC

T1 = Ee−d
αθ

∑
x∈Φ hxo [k]‖x‖−α1(x is Tx at time m)

= E
∏
x∈Φ

e−d
αθhxo [k]‖x‖−α1(x is Tx)

= E
∏
x∈Φ

[
e−d

αθhxo [k]‖x‖−α
1(x is Tx) + 1− 1(x is Tx)

]
I First averaging over ALOHA,

T1 = E
∏
x∈Φ

[
e−d

αθhxo [k]‖x‖−αp + 1− p
]

I Averaging over fading,

P(E c
m|Φ) = 1− T1 = 1−

∏
x∈Φ

[
1− p

1 + dαθ‖x‖α

]
Observe that P(E c

m|Φ) does not depend on the time index m.
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Ad hoc Networks Interfernece correlation

I

P(D > k |Φ) = P(E c
1 |Φ)P(E c

2 |Φ) . . .P(E c
k |Φ)

=

(
1−

∏
x∈Φ

[
1− p

1 + dαθ‖x‖α

])k

I Hence the conditional average of delay is

E[D|Φ] =
∞∑
k=0

P(D > k |Φ) =
∞∑
k=0

(
1−

∏
x∈Φ

[
1− p

1 + dαθ‖x‖α

])k

=
1∏

x∈Φ

[
1− p

1+dαθ‖x‖α

]
=
∏
x∈Φ

[
1− p

1 + dαθ‖x‖α

]−1
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Ad hoc Networks Interfernece correlation

Using PGFL of a PPP,

E
∏
x∈Φ

[
1− p

1 + dαθ‖x‖α

]−1

= exp

(
−λ
∫
R2

1−
[
1− p

1 + dαθ‖x‖α

]−1
dx

)

With correlation

E[D] = exp

(
pλd2θ2/αC (α)

(1− p)1−2/α

)

Observe E[D] =∞ for p = 1.
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|x|−α with correlation

|x|−α without correlation

(1+|x|α)−1 with correlation

(1+|x|α)−1 without correlation

Recall: Without considering
correlation

E[D] = exp
(
pλd2θ2/αC (α)

)
I Relying on fading is not su�cient for ARQ to succeed.
I Correlation of interference cannot be neglected.

F. Baccelli, B. Baszczyszyn, "A New Phase Transitions for Local Delays in MANETs," INFOCOM, 2010

Proceedings IEEE , vol., no., pp.1-9, 14-19 March 2010
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Cellular Networks

Analysis of Cellular Networks

* Primer on Point Processes

* Ad hoc Networks

* Cellular Networks
� SINR distribution
� Frequency reuse

* Heterogeneous Networks
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Cellular Networks

Cellular Trends

I Interference is a main challenge in cellular systems
1. SINR more important than SNR

I Universal frequency reuse
I Denser and denser deployments

2. BS cooperation and other interference-suppression techniques require
good models for other-cell interference

I Networks are becoming unplanned, decentralized and heterogeneous
I Picocells placed strategically in high-tra�c areas
I Femtocells/relays being placed randomly
I BS deployments increasingly driven by capacity needs rather than

coverage needs
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Cellular Networks

Emerging cellular networks

What we think of 4G+femto/pico

Cells getting smaller, more random and chaotic

GRK (IITM) Stochastic Geometry and Wireless Nets. July 2012 66 / 89



Cellular Networks

Some current models

Hexagonal model

1. Is it accurate?

2. Not very tractable.

Wyner model

1. Fixed background interference

2. Highly inaccurate (averaging)
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Cellular Networks SINR distribution

Proposed Model: PPP Base Stations

Base stations: big dots. Mobile users: little dots.

I BS locations are drawn from a
PPP of density λ

I Each mobile associates with the
closest BS

I Cells are Voronoi tessellations

Advantages

I Non uniform cell sizes

I Tractable?

Disadvantages

I BSs might get very close
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Cellular Networks SINR distribution

Comparison with real deployment
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Base stations: big dots. Mobile users: little dots.
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Cellular Networks SINR distribution

System model: Downlink

I The BSs are spatially distributed as a PPP of density λ

I Mobile users connect to the nearest (geographical) BS

I The path loss is given by `(x) = ‖x‖−α, α > 2.

I All BSs transmit at the same power P

I The fading between a BS x and a mobile y is denoted by hxy

What is the SINR distribution of a typical mobile user?

Without loss of generality, we can assume the typical mobile user to be at
the origin o.
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Cellular Networks SINR distribution

Analysis of SINR

Let x ∈ Φ be the BS that is closest to
the reference MS at the origin.

The downlink SINR of the MS at the
origin is

SINR =
hxor

−α∑
y∈Φ\{x} hyo‖y‖−α

where r = ‖x‖.

Compute P(SINR > θ)

Base stations: big dots. Mobile users: little dots.
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Cellular Networks SINR distribution

Analysis of SINR

Recall that the distribution of the nearest BS equals the �rst contact
distribution

f (r) = λ2πr exp(−λπr2)

I We �rst condition on the distance to the nearest BS r .

P(SINR > θ) = ErP(SINR > θ|r)

=

∫ ∞
0

P(SINR > θ|r)λ2πr exp(−λπr2)dr

I Focusing on P(SINR > θ|r) which we denote by pr

pr = P

(
hxor

−α∑
y∈Φ\{x} hyo‖y‖−α

≥ θ
∣∣∣r)

= E

exp
−θrα ∑

y∈Φ\{x}

hyo‖y‖−α
∣∣∣r


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Cellular Networks SINR distribution

Base stations: big dots. Mobile users: little dots.

I

pr = E

 ∏
y∈Φ\{x}

exp
(
−θrαhyo‖y‖−α

) ∣∣∣r


I Since the fades are independent and
exponentially distributed with unit mean,

pr = E

 ∏
y∈Φ\{x}

1

1 + θrα‖y‖−α
∣∣∣r


I Using PGFL on Φ ∩ B(o, r)c

pr = e
−λ

∫
B(o,r)c

1

1+θ−1r−α‖y‖α
dy
.

I Un-conditioning on r ,

P(SINR > θ) =

∫ ∞
0

e
−λ

∫
B(o,r)c

1

1+θ−1r−α‖y‖α
dy
f (r)dr .
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Cellular Networks SINR distribution

SINR distribution

The SIR distribution in a PPP BS network where a MS connects to the
nearest BS is given by7

P(SIR ≥ θ) =
1

1 + ρ(θ, α)

where ρ(θ, α) = θ2/α
∫∞
θ−2/α

1
1+uα/2

du.

I Does not depend on the density of BSs λ.
I Increasing the density of BSs does not increase the coverage probability.

I Simple expression
I For α = 4 reduces to (1 +

√
θ(π/2− arctan(1/

√
θ)))−1.

I Extensions to general fading distributions and noise possible.
I Since the PDF of SIR is known the average ergodic can be computed

I For α = 4, the computed ergodic rate is 1.49nats/sec/Hz

7
J. G. Andrews, F. Baccelli, and R. K. Ganti. A tractable approach to coverage and rate in cellular networks.

IEEE Trans. on Communications, Nov. 2011
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Cellular Networks SINR distribution

Numerical results
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Cellular Networks Frequency reuse

Frequency reuse

I Frequency planning necessary for
increasing the coverage.

I Assume that there are δ frequency
bands

I PPP: random allocation of bands
I Corresponds to thinning of a PPP Φ

I Density of Φm is λ/δ.

I We �rst consider the BS x ∈ Φ to
which the MS at the origin connects.

I ‖x‖ = r ∼ λ2πr exp(−λπr2)
I The interferers density is now λ/δ.

The coverage probability is

P(SIR ≥ θ) =
1

1 + 1
δρ(θ, α)

−2 −1 0 1 2
−2

−1

0

1

2
Frequency bands: 4
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Cellular Networks Frequency reuse

Coverage versus rate

1. The coverage probability is

P(SIR ≥ θ) =
1

1 + 1
δρ(θ, α)

~wwδ
2. The ergodic rate equals 1

δE[ln(1 + SIR)], which equals

1

δ

∫ ∞
0

P(ln(1 + SIR) > θ)dθ =
1

δ

∫ ∞
0

1

1 + 1
δρ(eθ − 1, α)

dθ,

which equals

R =

∫ ∞
0

1

δ + ρ(eθ − 1, α)
dθ

ww�δ
Coverage increases with δ while the average rate decreases with δ.
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Cellular Networks Frequency reuse

Numerical results
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Heterogeneous Networks

Analysis of Heterogeneous Networks

* Primer on Point Processes

* Ad hoc Networks

* Cellular Networks

* Heterogeneous Networks
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Heterogeneous Networks

System Model

I K tier network

I The BS locations in tier i are modelled by
a PPP Φi

I Density of Φi is λi
I BSs in tier i transmit with power Pi

I A mobile can connect to a BS in tier i if
the received SIR is greater than θi

I All tiers transmit in the same frequency
band and hence contribute to interference

I Fading is i.i.d Rayleigh

I Path loss is given by ‖x‖−α, α > 2

Assumption

The SIR thresholds θi > 1.
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An example of k = 3 network.
Red: FemtoBS, blue: PicoBS,

black: MacroBS
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Heterogeneous Networks

Max SIR model

Connectivity model

A mobile user can connect to a BS of any tier provided that the SIR
constraint is satis�ed, i.e., to connect to a BS of tier i , the SIR should be
greater than θi .

Lemma

If θi > 1, a mobile user can connect to at most one BS

Proof.

Let ai denote the received power from a BS i , then only one of the
following terms can be greater than 1

ai∑
j 6=i aj

, i = 1, 2, . . .
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Heterogeneous Networks

Coverage probability

The receive SIR of a mobile at origin and a BS x ∈ Φm is

SIR(x) =
hxo‖x‖−α∑K

i=1

∑
y∈Φi

hyo‖y‖−α − hxo‖x‖−α

Let pc denote the coverage probability.

1− pc = E

 K∏
m=1

∏
x∈Φm

1(SIR(x) < θm)


= E

 K∏
m=1

∏
x∈Φm

1− 1(SIR(x) > θm)


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Heterogeneous Networks

Contd...

Expanding the inner product,

1− pc =1− E
K∑

m=1

∑
x∈Φm

1(SIR(x) > θm)

+ E
∑

1(SIR(x) > θm)1(SIR(y) > θn)︸ ︷︷ ︸
T2

−( three terms ) . . .

The term T2 and higher order terms are zero since the MS can connect to
at most 1 BS. Hence

pc =
K∑

m=1

E
∑
x∈Φm

1(SIR(x) > θm)
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Heterogeneous Networks

Contd...

How to evaluate E
∑

x∈Φm
1(SIR(x) > θm).

Recall Campbell Mecke theorem

For a PPP of density λ

E
∑
x∈Φ

f (x ,Φ \ {x}) = λ

∫
R2

E[f (x ,Φ)]dx

E
∑
x∈Φm

1(SIR(x) > θm) = λm

∫
R2

P(SIR(x) > θm)dx

As before,

P
(
Pmhxo‖x‖−α

I
> θm

)
= LI (‖x‖αθmP−1m ).
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Heterogeneous Networks

Contd...
Observe that the total interference is the sum of the interference from each
tier which are independent. Hence

LI (‖x‖αθmP−1m ) =
K∏
j=1

LIj (‖x‖
αθmP

−1
m )

Recall that the Laplace transform of interference Ij =
∑

x∈Φj
Pjhxo‖x‖−α is

LIj (s) = exp(−λjP
2/α
j s2/αC (α)),

where C (α) = 2π2

α sin(2π/α)

Hence

LI (‖x‖αθmP−1m ) = exp(−‖x‖2θ2/αm P
−2/α
m

K∑
i=1

λiP
2/α
i C (α))
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Heterogeneous Networks

Coverage results8

Combining everything,

pc =
k∑

m=1

λm

∫
R2

exp(−‖x‖2θ2/αm P
−2/α
m

K∑
i=1

λiP
2/α
i C (α))dx

Lemma

The coverage probability in a K tier heterogeneous network is

pc =
π

C (α)

∑K
m=1 λmP

2/α
m θ

−2/α
m∑K

m=1 λmP
2/α
m

, θi > 1

1. A simple expression. Convex combination of θ
−2/α
m

2. pc does not depend on the densities if all the thresholds θm are equal
I Can add more tiers without changing the coverage

7
H. Dhillon, R. K. Ganti, F. Baccelli, and J. G. Andrews. "Modelling and analysis of k-tier downlink

heterogeneous cellular networks ". IEEE JSAC, April 2012
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Heterogeneous Networks

Fraction of users connected to j-th tier is

βj =
λjP

2/α
j θ

−2/α
j∑K

m=1 λmP
2/α
m θ

−2/α
m

Lemma (Closed access)

When the user is allowed to connect to only a subset of tiers

B ⊂ {1, 2, 3, ..,K}, the coverage probability is

pc =
π

C (α)

∑
m∈B λmP

2/α
m θ

−2/α
m∑K

m=1 λmP
2/α
m

, θi > 1
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Heterogeneous Networks

Numerical results
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Simulation: PPP

Simulation: Actual BSs

Simulation: Grid

Analysis

A two-tier HCN, K = 2, α = 3, P1 = 100P2, λ2 = 2λ1, β2 = 1dB
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Heterogeneous Networks

Conclusions

I Networks are getting more random and chaotic

I Random spatial models are necessary for modelling current networks.

I A rich set of mathematical tools are provided by stochastic geometry
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