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Abstract—We consider a block fading multiple access channel
with N users transmitting information to a single receiver.
We assume channel state is known only at the receiver and
ARQ is used to combat fading and improve the transmission
reliability. The overall goodput for such a system is a function of
user transmission rates and outage probabilities. In this paper,
we provide approximations for common and individual outage
probability for a general N user symmetric Gaussian MAC
channel based on the geometry of the capacity region. Using
these approximations, we analyse the optimal goodput as a
function of the number of MAC users and the signal-to-noise
ratio (SNR). With common outage, we observe a SNR threshold
above which the optimal outage probability (for optimal goodput)
decreases with the number of users, and below which the optimal
outage probability increases with users. When individual outage
is considered, the optimal outage probability decreases with
increasing users for all SNRs.

I. INTRODUCTION

Automatic repeat request (ARQ) is a common technique
used to improve the link level reliability in a wireless network.
ARQ in its simplest form can be viewed as repetitive coding
over multiple frames, wherein a data frame is retransmitted un-
til received correctly at the receiver. ARQ is particularly useful
in wireless networks where there is high cost of improving the
physical layer reliability through coding and signal processing
techniques, because of the inherent unreliability of the channel.
Most current wireless standards employ ARQ and its variants
like HARQ to improve the overall reliability of a link.

Wu et al., analysed ARQ in a point-to-point wireless link
with Rayleigh fading in [1]. With ARQ, it was shown that
the optimal frame error probability that maximizes the overall
goodput is about 30%. Hence, simple high rate error control
codes coupled with ARQ can be used to achieve the optimal
goodput, thus reducing the overall complexity of the system
[2]. In this paper, we analyse ARQ in a symmetric multiple
access channel where are there are multiple transmitters and
a single receiver.

In a MAC channel, there are two different notions of
outage probabilities. The first is the common or joint outage
probability where all the users are in outage even if one
of the user cannot be decoded correctly. The other is the
individual outage probability, which equals the probability that
a particular user is in outage irrespective of the outage of other
users. The capacity region of MAC with N users is bounded
by 2N − 1 mutual information rate constraints. Obtaining
a general expression for outage is a messy combinatorial

problem. Hence in this paper we obtain an approximation
on common and individual outage probabilities based on the
geometry of the capacity region. Using the approximation, the
goodput is analysed for the common outage probability. For
the individual outage, the mathematical analysis for goodput
is tedious even with the approximation. Hence we present
numerical results and discuss them.

The use of ARQ as error controlling scheme is long pro-
posed in [2]. For a fading point-to-point channel, throughput
maximization with delay constraints is considered in [3].
The diversity-multiplexing trade-off for MAC with ARQ is
discussed in [4]. In [5], [6] the throughput capacity region
for fading MAC and the optimum power and rate allocation
schemes are provided. In [7] common and individual outage
capacity regions are obtained for fading MAC and optimal
power allocation strategies are discussed. All of the above
works on MAC channels assume CSIT. A fading MAC without
CSIT was considered in [8] and a comparison of throughput
with joint multi-user decoding and single-user decoding was
presented. In [9] it was shown that considering individual
outages results in a better throughput compared to common
outage for a two user case. In this paper, we consider a N user
fading MAC without CSIT and discuss outages and goodput
involved with it.

The paper is organized as follows: The system model
and the two notions of outage probabilities are introduced
in Section II, and the outage approximations are provided
in Section III for a symmetric N user MAC. The goodput
analysis is provided in Section IV. Finally, in Section V, we
summarize our results.

II. SYSTEM MODEL

We consider a N user symmetric discrete time MAC with
Rayleigh fading [9]. The received signal is given by

y =

N∑

i=1

√
γhixi + z (1)

where xi is the information transmitted by the i-th user and z
is the additive Gaussian noise. We assume that the the input
alphabet xi and z are i.i.d. CN (0, 1). The fading between the
i-th user and the receiver is denoted by hi and is assumed
to be i.i.d. CN (0, 1) across the users and time. In this paper,
we assume a symmetric MAC channel, i.e., the channel gains



of all the users are equal and the common gain (SNR) is
denoted by γ. We also assume receiver has the knowledge
of instantaneous fading states of the user channels (CSIR).

For a N -user MAC, conditioned on the fading states, the
capacity region C is a set of achievable rate vectors R =
[R1 · · ·RN ] is given by

C = {R : RS ≤ log2 (1 + γXS) ,∀S ⊆ N} , (2)

where N = {1, 2, · · · , N}, RS =
∑
i∈S Ri, XS =

∑
i∈S Xi

and Xi = |hi|2. Since hi ∈ CN (0, 1), Xi is unit mean
exponential random variable.

We now define the common and the individual outage prob-
abilities for a N user MAC. With common outage, packet error
for any user is considered to be packet error for all the users
and all users are to retransmit the information. With individual
outage, packet error for any user is treated independently and
only those users are to retransmit the information.

A. Common outage
In Figure 1(a) the capacity of a two user MAC is illustrated.

Observe that the capacity region depends on the fade states. So
for a given rate vector, the common outage probability is the
probability that the rate vector R is outside the capacity region.
Hence for an N -user MAC, the common outage probability is
P(R /∈ C), which equals

εc(N) = 1− P (RS ≤ log2 (1 + γXS) ,∀S ⊆ N ) . (3)

The goodput with common outage probability is given by

GC(N) =

N∑

i=1

Ri(1− εc(N)) = (1− εc(N))

N∑

i=1

Ri. (4)

where Ri is the transmission rate of user i in N -user MAC.

B. Individual outage
The individual capacity region for a user i is the set of

achievable rate vectors where message decoding of user i is
successful irrespective of the decoding of other users. It is
the union of the capacity region C, defined in (2), (where
decoding of all users are successful) and the region where
message decoding of user i is successful with decode failure
of any user from set G ⊆ N \ i. Hence the individual outage
for user i in N user MAC is

εi(N) = 1− P

(
C ∪

(⋃

G
CG

))
,∀G ⊆ N \ i (5)

where CG is

CG =

{
RGc ≤ log2

(
1 +

γXGc
1 + γXG

)
,∀Gc ⊆ N \ G

}

The goodput with individual outages is

GI(N) =

N∑

i=1

Ri(1− εi(N)). (6)

For two users, the common outage region is illustrated in
Figure 1(a) and the individual outage region for the first user
in Figure 1(b).

Common Outage

Region

Capacity Region

R2

log2(1 + γX2)

R1

log2

(
1+

γX2

1 + γX1

)

log2(1 + γX1)log2

(
1 +

γX1

1 + γX2

)

(a)

Individual Outage

for user 1

for user 1

Capacity Region

R2

R1
log2(1 + γX1)

log2(1 + γX2)

log2

(
1+

γX1

1 + γX2

)

log2

(
1+

γX2

1 + γX1

)

(b)

Fig. 1. Common and individual outage regions of a 2-user MAC

III. OUTAGE PROBABILITY APPROXIMATIONS

Since the capacity region of a N user MAC is bounded
by 2N − 1 mutual information constraints, computation of
outage probabilities becomes extremely messy for N > 3.
Hence we make approximations by limiting the number of rate
constraints. To understand the impact of the rate constraints
we first look at the structure of capacity region for low and
high SNRs.

The capacity region is the convex hull of its vertices [5]. The
vertices on the axes are defined by individual channel SNRs,
i.e., log2(1 + γXi), i ∈ N . The coordinates of other vertices
are defined by SINRs given by log2(1 + γXi

1+γXG
),G ⊆ N \ i.

At very low SNR (corresponds to small γ), it is easy to
see that γXi

1+γXG
≈ γXi and hence the SINRs equals their

corresponding SNRs. Hence the capacity region resembles to
that of N parallel individual channels constrained only by
individual rate constraints Ri ≤ log2(1 + γXi), i ∈ N .

At high SNR, the probability of the events RS ≤
log2 (1 + γXS) will be dominated by the event RN ≤
log2 (1 + γXN ). Hence in this case, the dominating rate
constraint is RN ≤ log2(1 + γXN ). See Figure 2 for an
illustration of these rate constraint for 3 user MAC capacity
region.
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Fig. 2. High and low SNR approximations of a 3 user MAC capacity region.

A. Common outage probability
Retaining only individual rate constraints and the total sum

rate constraint, define

ε̃c(N) = 1− P

(
N∑

i=1

Xi ≥ ωN , X1 ≥ α1, ...., XN ≥ αN

)
,

where ωN = 2
∑N
i=1 Ri−1
γ and αi = 2Ri−1

γ . Observe that
the probability 1 − ε̃c(N) is obtained by retaining only the



individual rate constraints Rk ≤ log2(1+γXk), k ∈ N and the
total rate constraint RN ≤ log2(1 + γXN ) in the probability
expression (3). Hence 1−ε̃c(N) upper bounds 1−εc(N) which
implies ε̃c(N) lower bounds the actual outage probability. In
the next lemma, we obtain an expression for ε̃c(N).

Lemma 1. The lower bound on the common outage probabil-
ity in a MAC channel is given by

ε̃c(N) = 1− e−Sn Γ(N,ωN − SN )

Γ(N)
(7)

where SN =
∑N
i=1 αN , where Γ(n, x) =

∫∞
x
tn−1e−tdt is

the standard upper incomplete gamma function.

Proof: The proof proceeds by induction on N . For N =
2, the probability equals,

1− P(X1 +X2 ≥ ω2, X1 ≥ α1, X2 ≥ α2),

which equals 1−e−ωN (1+ωN−S2) which equals ε̃c(2) using
the expansion of incomplete gamma function for integer scale
exponent. Let the statement be true for N = k. We will now
prove the result for N = k + 1. For N = k + 1,

ε̃c(k + 1) = 1−

P

(
k∑

i=1

Xi ≥ ωN −Xk+1, X1 ≥ α1, ...., Xk+1 ≥ αk+1

)
.

Also observe that X1 ≥ α1, ...., Xk ≥ αk implies
∑k
i=1Xi ≥

Sk. Conditioning on Xk+1 = y and using the induction
hypothesis for k, we obtain

ε̃c(k + 1) = 1−
∫ ωk+1−Sk

αk+1

e−Sk

(k − 1)!
Γ(k, ωk+1 − Sk − y)e−ydy

+

∫ ∞

Wk+1

e
∑k
i=1 αie−ydy.

Using the indicator function to represent the incomplete
gamma function Γ(s, x) =

∫∞
0
e−tts−11(t ≥ x)dt and

exchanging integrals, we have

ε̃c(k + 1) = 1−
e−Sk

(k − 1)!

∫ ∞

0

tk−1e−t
(
e−max(αk+1,ωk+1−Sk−t)

− e−(ωk+1−Sk)
)

dt+

∫ ∞

ωk+1

e
∑k
i=1 αie−ydy.

Using the fact that Sk + αk+1 = Sk+1, and simplifying the
integrals, we obtain

ε̃c(k + 1) = 1−

e−ωk+1
(ωk+1 − Sk+1)k

k!
+

e−Sk+1

(k − 1)!
Γ(k, ωk+1 − Sk+1).

The incomplete gamma function satisfies the property Γ(s +
1, x) = sΓ(s, x) + xse−x, and hence

ε̃c(k + 1) = 1− e−Sk+1

k!
Γ(k + 1, ωk+1 − Sk+1),

proving the induction.
In Figure 3, the success probability 1− ε̃c(N) is plotted as

a function of rate (taken to be equal for all users) for different
N and SNR. We observe that the lower bound provides a good
approximation.
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Fig. 3. Success probability 1 − ε̃c(N) versus the transmission rate R for
different number of users and SNRs. We assume that all the users transmit at
the same rate.

B. Individual outage probability

The union in (5) makes it very difficult to obtain a lower
bound for the individual outage probabilities. Instead we
focus on approximating the individual outage probability by
discarding some constraints in (5). More precisely, we retain
the individual rate constraints and total rate constraint as done
in common outage approximations. In addition, for the user i,
we consider the constraint Ri ≤ log2(1 + γXi

1+γ
∑N
k=1,k 6=iXk

),
i.e., the event that message decoding succeeds even with in-
terference from all other users. This approximation is denoted
by ε̃i(N) and equals

ε̃i(N) = 1− P

[{
Xi ≥ αi,

N∑

k=1

Xk ≥ ωN

}

⋃



Xi ≥ αi + αiγ

N∑

k=1,
k 6=i

Xk





]
, (8)

where ωN = 2
∑N
i=1 Ri−1
γ and αi = 2Ri−1

γ . Figure 4, shows the
closeness of this approximation for N = 3 and N = 4.

In the next lemma we evaluate the probability in (8).

Lemma 2. The approximated individual outage probability
ε̃i(N) is given by

ε̃i(N) = 1− e−ωN

Γ(N)

(
(ωN − αi)N−1 − (ωN−1)N−1

)

− e−αi

Γ(N − 1)

(
Γ(N − 1, ωN − αi) +

γ(N − 1, ωN − αi)
(1 + γαi)N−1

)
,



where ωN−1 = 2
∑N
k=1,k 6=i Rk−1

γ .

Proof: Since Xk are i.i.d exponential, XG =∑N
k=1,k 6=iXk is gamma distributed with shape parameter

N − 1 and is independent of Xi. Using basic set axioms,
the RHS of (8) can be simplified to

ε̃i(N) =P(Xi ≤ αi)+
P
(
XG ≤ ωN −Xi, Xi ≤ αi + γαiXG , Xi ≥ αi︸ ︷︷ ︸

T1

)
.

We have P(Xi ≤ αi) = 1− e−αi . We evaluate the probability
of the event T1 by first conditioning on XG = y. So we have

P(T1|XG = y) =

∫ min(ωN−y,αi+γαiy)

αi

e−xdx

=
{
e−αi − emin(ωN−y,αi+γαiy)

}
.

Now averaging over XG we obtain

P(T2) =
∫ ωN−αi

0

(
e−αi − emin(ωN−y,αi+γαiy)

)y(N−2)e−y

(N − 2)!
dy,

=
e−αi

N − 2!

∫ ωN−αi

0

yN−2e−ydy

− 1

N − 2!

∫ ωN−αi
1+γαi

0

e−αie−(1+γαi)yyN−2dy

− e−αi

N − 2!

∫ ωN−αi

ωN−i

e−ωN+yyN−2e−ydy.

Evaluating the above integrals we obtain the result.
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Fig. 4. Success probability 1 − ε̃i(N) versus the transmission rate R for
different number of users. Here γ =

√
10 (5dB) and we assume that all the

users transmit at the same rate.

In Figure 4 the actual and approximated individual outage
probabilities are plotted as a function of R for different N .

For N = 1, 2 the above approximations for both the
individual and common outage corresponds to the exact outage
probability. In the next section, we use these approximations
to analyse the optimal goodput in N -user MAC.

IV. GOODPUT OF MAC CHANNELS

In a single user case, a frame is retransmitted till it is
successful decoded. Hence the goodput (long term average
of rate at which information is successfully received) denoted
by G is function of both transmission rate and packet error
probability and is given by

G = R(1− ε), (9)

where ε is the link outage probability when the transmission
rate is R. Since ε is a function of the rate, the goodput can be
considered as a function that depends entirely on ε or R. It is
intuitive that a small transmission rate would lead to a lower
outage. However the goodput which is a product of rate and
success probability will be low. On the other hand, for a large
rate, the outage probability will be high leading to a smaller
goodput. So there is an optimal rate of transmission that
would maximize the goodput. Also observe that this optimal
rate would translate to an optimal outage probability for the
channel.

We now briefly describe the results from [1] that deal with
a point to point channel. The packet or frame error probability
corresponding to transmission rate R over a fading channel,
denoted by ε

ε = P
(
log2

(
1 + γ|h|2

)
≤ R

)
= 1− exp

(
−2R − 1

γ

)
.

Hence the the optimal packet error probability (PEP) for a
single user system (N = 1) that maximizes the goodput [1] is

ε∗ = 1− exp

(
1

γ
− 1

W (γ)

)
. (10)

where W (.) is the LambertW function [10]. Hence the optimal
outage probability depends only on SNR. Next we see that in
MAC channels, optimal outage will also depend on N .

A. Goodput with common outage

In the N user case with common outage, the goodput
is GC(N, R̄) = (1 − εc(N, R̄))

∑N
i=1Ri, where R̄ =

[R1, R2, ..., RN ] represents the vector of rates. In a symmetric
MAC setting, the common outage and goodput are symmetric
function of rates. Hence, intuitively the rates of all the users are
equal at the optimal goodput, which is proved in the following
lemma.

Lemma 3. Let Rav = N−1
∑N
i=1Ri. Also let R̄av =

[Rav, ..., Rav], i.e., a vector with all the N entries equal toRav .
Then

GC(N, R̄) ≤ GC(N, R̄av)

Proof: Since
∑
Ri is same in both the cases, it suffices

to prove that the success probability is higher when all the
users use a common Rav rate rather than R̄ rates. By Jensen’s
inequality we have (with a slight abuse of notation) ωN ’s equal
and SN (R̄) ≥ SN (R̄av). Also from Lemma 1, and expansion
of the incomplete gamma function, the success probability
equals e−ωN

∑N−1
k=0

(ωN−SN )k

k! , which is a decreasing function



of SN . Hence the success probability with R̄av is greater than
the success probability with R̄, thus proving the lemma.

Since we are interested in maximum goodput, by previous
lemma without loss of generality we assume that the rates of
all the users are equal. Hence the goodput for the common
outage is

GC(N,R) = (1− εc(N,R))NR. (11)

where R is the common rate of transmission. It is easy to
observe that there exists, at a particular SNR, an optimal
transmission rate R∗ as a function of N that maximizes
goodput. This optimal rate corresponds to an optimal outage
probability which we denote by ε∗c(N).

For N = 1, it was shown in [1] that the optimal outage
probability is about 50% at 2 dB SNR. However, it is not
clear if such high outage is optimal when there are multiple
users. In Figure 5 the optimal outage probability is plotted as
a function of SNR for different users. We make the following
observations1:

1) In the low SNR regime, the optimal outage probability
increases with the number of users.

2) In the high SNR regime, the optimal outage probability
decreases with the number of users.

At 2 dB SNR, we observe that the optimal outage probability
is larger than 50% in the multi-user scenario and increases
with the number of users. When SNR = 16 dB the optimal
outage probability for N = 1 is 30% while it is about 20%
for N = 4. To show the existence of a crossover point we first
show that ε∗c(N) < ε∗c(N + 1) when γ → 0, and then prove
that ε∗c(N) > ε∗c(N + 1) when γ →∞. See Appendix A for
the main arguments in the proof.

An intuitive explanation for the cross over: At high and low
SNRs, we can ”view” the MAC channel as a point-to-point link
and use the fact that for a single user channel, the optimal
outage increases with decreasing SNR (from Figure 5 or (10))
• In the low-SNR regime, as explained in Section III, the

capacity region looks almost like a cube in N dimension
(see Figure 2(a)). Hence by treating the signals of other
users as residual noise, the effective SNR of each user is

γ
γ(N−1)+1 which is smaller than γ and decreases with
increasing N . So each user can be viewed as a point-
to-point link with an effective SNR that decreases with
increasing N . Hence it follows that the optimal outage
probability increases with increasing N .

• At high-SNR, the capacity region almost looks like a
simplex (see Figure 2(b)). Any point in the simplex can be
obtained by time sharing. Assume that each user transmits
for 1/N time slots. Hence the goodput equals NR

N (1−ε),
where R is the rate and ε is the outage probability of
the single transmitting user. Since the user transmits only
1/N fraction of the time, the power of the user can be
boosted by a factor N , thereby increasing the effective
SNR to γN . So in the high-SNR regime with N users,
each user can be viewed as a point-to-point link (with

1These results hold when the number of users is not scaling to ∞.
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Fig. 5. Optimal common outage probability that maximizes the goodput
versus the SNR for different N .

time sharing) with an effective SNR that increases with
the number of users. Hence it follows that the optimal
outage probability decreases with increasing N .

B. Goodput with individual outage
We now analyse the goodput behaviour considering the

individual outage probability. The goodput with individual
outages is a symmetrical function of user rates. Hence the
optimal goodput is achieved when all the users have equal
rate, something similar to the case of common outage. Hence
with equal rates the goodput (6) is

GI(N) = NR(1− εI(N)).

The goodput analysis (even with the approximation) is very
intractable. Instead we look at the numerical results to obtain
some intuition. Unlike in the common outage case, from
Figure 6 we observe that the optimal outage probability
decreases with increasing N for any SNR.

−10 −5 0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

γ: SNR in dB

o
p
t
i
m
a
l
 
i
n
d
i
v
i
d
u
a
l
 
o
u
t
a
g
e
 
p
r
o
b
a
b
i
l
i
t
y
 

ε I*

optimal individual outage probability vs SNR 

 

 

ε
I

*(1)(actual)

ε
I

*(2)(actual)

ε
I

*(3)(actual)

ε
I

*(3)(approx)

ε
I

*(4)(approx)

Fig. 6. Optimal individual outage probability that maximizes the goodput
versus the SNR for different N .



V. CONCLUSION

In this paper, a symmetric Gaussian fading MAC channel
with N users with channel state information available only at
the receiver is considered. A tight lower bound to the common
outage probability and a good approximation to the individual
outage probability are provided.

It is shown that the optimal common outage probability that
maximizes goodput (using ARQ) increases with the number of
users at low SNR and decreases with number of users at high
SNR. Hence in a network with large number of users operating
at high SNR, it is not optimal to rely entirely on ARQ to achieve
the best goodput. Instead the reliability has to be increased
(especially for large N ) by using appropriate codes. However,
at low SNR, relying on ARQ would be sufficient to achieve
the optimal goodput when joint decoding is employed. When
individual outage is considered, the optimal outage probability
decreases with increasing number of users for all SNR.

APPENDIX A
EXISTENCE OF A CROSSOVER POINT FOR COMMON

OUTAGE PROBABILITY

Finding the optimal outage is equivalent to finding the
optimal rate for which throughput maximizes.

Differentiating (11) with respect to R and setting it to zero
we see that the optimal R satisfies

ε′c(N,R)

1− εc(N,R)
=

1

R
.

Using the approximation from Lemma 1,

ε̃c
′(N)

1− ε̃c(N)
=
N ln(2)2R

γ
+

N ln(2)(2NR − 2R)

γ

{
(ω −Nα)N−1e−(ω−Nα)

Γ(N,ω −Nα)

}
,

which is an increasing function of N .
This proves that R∗(N + 1) ≤ R∗(N) and clearly indicates

that each user transmission rate should decrease as the number
of users in MAC increases.

Hence the optimal rate R must be chosen to satisfy

NR2R+(NR2NR −NR2R).
{

(ω −Nα)N−1e−(ω−Nα)

Γ(N,ω −Nα)

}
=

γ

ln(2)
. (12)

The above equation (12) cannot be solved in general to
obtain a closed form expression for optimal R. Instead we
will look at the asymptotes as γ → 0 and γ → ∞ to prove
the crossover.

In the above equation (ω −Nα) is a function of R and γ.
And it is obvious that as γ → 0, R→ 0 and as γ →∞, R→
∞. However the optimal rate R is always upper bounded by
NR ≤ log2(1 +Nγ), maximum sum rate in symmetric MAC
with CSIT. Hence the asymptotic behaviour is determined by
R when γ → 0 and γ when γ →∞.

For γ → 0, R ≈ 0 and ω − Nα ≈ 0. The approximation
in (7) reduces to ε̃c(N) ≈ 1 − e−Nα (which is the common

outage probability for low SNR approximation shown in Figure
2(a)). With this (12) reduces to

NR2R ≈ γ

ln(2)

and we get optimal rate, for low SNR, as

R∗ = log2




γ
N ln(2)

W
(

γ
N ln(2)

)


 . (13)

By substituting the above equation (13) into ε̃c(N) we obtain
ε̃c
∗(N) ≤ ε̃c∗(N + 1).
For γ → ∞, R is large and however ω − Nα ≈ 0. The

approximation in (7) reduces to ε̃c(N) ≈ 1− Γ(N,ω)
Γ(N) (common

outage probability for high SNR approximation shown in Fig-
ure 2(b)). Also, by approximating Γ(N,ω−Nα) ≈ (N − 1)!

and ω ≈ 2NR

γ , (12) reduces to

NR 2NR
2(NR)N−1

(N − 1)!γN−1
=

γ

ln(2)
,

and we get optimal rate, for high SNR, as

R∗ =
1

N2
log2




N !γN

ln(2)

W
(
N !γN

ln(2)

)


 . (14)

With this optimal rate, ω =

(
N !

ln(2)W
(
N!γN

ln(2)

))1/N

. Substi-

tuting this into the above expression for asymptotic ε̃c(N),
we see ε̃c∗(N) ≥ ε̃c

∗(N + 1) for high SNR. This proves the
existence of crossover in the optimal common outage curves.
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