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Abstract—Mobility modeling and analysis is a key issue in
wireless networks, but there are surprisingly few fundamental
results. In this paper we propose a new and quite general random
waypoint (RWP) mobility model which is valid over the entire
plane. We derive key properties of the proposed mobility model
including transition length, transition time and spatial node
distribution. Then the RWP mobility model is applied to study
the handover rate in cellular networks under both deterministic
(hexagonal) and random (Poisson) base station (BS) models.
Closed form expressions for handover rate can be obtained, most
of which to our knowledge are the first of their kind. For example,
these results show the expected property that the handover rate
is proportional to the square root of base station density. Also, we
find that Poisson-Voronoi model for BS coverage areas is about as
accurate in terms of mobility (particularly handover) evaluation
as the ubiquitous hexagonal model.

I. INTRODUCTION

The support of mobility is a fundamental aspect of wireless
networks [1], [2]. Mobility management is taking on new
importance and complexity in emerging cellular networks,
which have ever-smaller and more irregular cells. Mobility has
generally been handled heuristically, and indeed there are very
few analytic results or even widely accepted models on the
fundamentals of mobility, e.g. the handover rate as a function
of speed in a cellular network.

One approach is to construct mobility models based on em-
pirical mobility patterns, known as trace models [1]. Though
considered accurate, they require the knowledge of many
detailed network characteristics and rule out general analytical
models and results. Therefore, so-called synthetic models are
often utilized to analyze the impact of mobility on network
performance and to evaluate protocols in simulation. Popular
synthetic models include random walk, random waypoint
(RWP), and Gauss-Markov [1].

In this paper, we focus on RWP mobility model orig-
inally proposed in [3]. In this model, mobile users move
in a finite domain A. At each turning point, the mobile
user selects the destination point (referred to as waypoint)
uniformly distributed in A and chooses the velocity from some
distribution. Then the user moves along the line connecting its
starting waypoint to the newly selected waypoint at the chosen
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velocity. This process repeats at each waypoint. Optionally, the
mobile user can have a random pause time at each waypoint
before moving to the next waypoint. A drawback of the RWP
mobility model is that the stationary spatial node distribution
tends to concentrate near the centre of the finite domain [4].
Thus, we propose a new RWP mobility model defined on the
entire plane and then derive its associated properties.

We then apply this new RWP model to study handover
rate in cellular networks whose BSs are modeled in two
opposite ways. First is the traditional hexagonal grid, which
represents an extreme in terms of regularity and is completely
deterministic. The second is to model the BS locations as
drawn from a Poisson point process (PPP), which creates a
set of BSs with completely independent locations [5], [6].
Thus, most any real-world deployment would seem to fall
in between these two extremes, since real BS deployments
are neither perfectly regular nor independent. Under the PPP
BS model, the cellular network can be viewed as a Poisson-
Voronoi tessellation if the mobile users are assumed to connect
to the nearest BSs. Closed form expressions are obtained
for handover rate under both models. To the best of our
knowledge, most of these expressions are new.

The analysis in this paper requires stochastic geometric
tools, which are becoming increasingly sophisticated and pop-
ular [7]–[10]. As far as mobility is concerned, [11] proposed a
framework to study the impact of mobility in cellular networks
modeled as Poisson-Voronoi tessellation. In particular, the
authors proposed Poisson line process to model the road
system, along which the mobile users move. Thus, the mobility
pattern in [11] is of large scale while the RWP mobility model
in this paper is of small scale. Our study can be viewed as
a complementary one to [11] and gives valuable insights. For
example, our result indicates that if cells decrease in size such
that the BS density per unit area is increased by 4 times, then
the handover rate would be doubled. Also, recent work showed
that the PPP model for BSs was about as accurate in terms of
SINR distribution as the hexagonal grid for a representative
urban cellular network [12]. Interestingly, we find that this
observation is also true for mobility evaluation, though the
Poisson-Voronoi model yields slightly higher handover rate
than hexagonal model.

Before ending this section, we remark that most of the
proofs in this paper are omitted for brevity. For interested
readers, we refer to [13].



II. PROPOSED RWP MOBILITY MODEL

We describe the proposed RWP mobility model in this
section. As in the description of traditional RWP model
(see, e.g., [4]), the movement trace of a node can be
formally described by an infinite sequence of quadruples:
{(Xn−1,Xn, Vn, Sn)}n∈N , where n denotes the n-th move-
ment period. During the n-th movement period, Xn−1 denotes
the starting waypoint, Xn denotes the target waypoint, Vn
denotes the velocity, and Sn denotes the pause time at the
waypoint Xn.

We next describe the way of selecting waypoints in R2.
Given the current waypoint Xn−1, the next waypoint Xn is
chosen such that the included angle between the vector Xn−
Xn−1 and the abscissa is uniformly distributed on [0, 2π] and
the transition length Ln =‖ Xn −Xn−1 ‖ is a nonnegative
random variable. This selection of waypoints is independent
and identical for each movement period.

Though there is a degree of freedom in modeling the
random transition lengths, we focus on a particular choice in
this paper. Specifically, the transition lengths {L1, L2, ...} are
chosen to be independent and identically distributed (i.i.d.)
with cumulative distribution function (cdf)

P (L ≤ l) = 1− exp(−λπl2), l ≥ 0 (1)

i.e., the transition lengths are Rayleigh distributed. This se-
lection bears an interesting interpretation: Given the waypoint
Xn−1, a homogeneous PPP Φ(n) with intensity λ is generated
and then the nearest point in Φ(n) is selected as the next
waypoint, i.e., Xn = arg minx∈Φ(n) ‖ x − Xn−1 ‖ . The
selection of velocity and pause time follow the traditional
RWP mobility model. In particular, velocities Vn are i.i.d.
with distribution PV (·). Pause times Sn are also i.i.d. with
distribution PS(·).

Under the proposed model, different mobility patterns can
be captured by choosing different λ’s. Larger λ statistically
implies that the transition lengths L are shorter. These λ’s
may be appropriate for mobile users walking and shopping
in the city. In contrast, smaller λ statistically implies that the
transition lengths L are longer. These λ’s may be appropriate
for driving users, particularly those on the highways. This
intuitive result can also be observed in Fig. 1, which shows 4
sample traces of the proposed RWP mobility model.

III. STOCHASTIC PROPERTIES OF THE PROPOSED RWP
MOBILITY MODEL

In this section, we study the various stochastic properties
of the proposed RWP mobility model. Stochastic properties of
interests include transition length, transition time and spatial
node distribution.

A. Transition length

We define transition length as the Euclidean distance be-
tween two successive waypoints. In the proposed model, the
transition lengths can be described by a stochastic process
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Fig. 1. Sample traces of the proposed RWP mobility model with λ equals
10−1, 10−2, 10−3 and 10−4 respectively

{Ln}n∈N where Ln are independent and identically Rayleigh
distributed with

E[L] =
1

2
√
λ
. (2)

Note that the transition lengths are not i.i.d. in the traditional
RWP mobility model. For example, a node currently located
near the border of the finite domain tends to have a longer
transition length while a node located around the centre of the
finite domain statistically has a shorter transition length for
the next movement period.

Nevertheless, the random waypoints Xn are i.i.d. in the
traditional model, which is obvious since these waypoints are
selected uniformly from a finite domain and independently
over movement periods. This property forms the basis of the
analysis of the traditional RWP mobility model (see, e.g., [4],
[14]). In contrast, the waypoints in our proposed model are
not i.i.d. but form a Markov process.

B. Transition time

We define transition time as the time a node spends during
the movement between two successive waypoints. We denote
by Tn the transition time for the movement period n. Then
T = L/V where we omit the period index n since Tn are i.i.d..
Denote V ∈ R as the range of the random velocity V . Given
any velocity distribution PV (·), the probability distribution of
T is given as follows.
Proposition 1. The cdf of the random transition time T is given
by

P (T ≤ t) = 1−
∫
V

exp(−λπv2t2)dPV (v), t ≥ 0. (3)

As a specific application of Prop. 1, the following corollary
gives closed form expressions for transition times under two
types of velocity distributions.
Corollary 1. 1) If V ≡ ν where ν is a positive constant, the

pdf of transition time T is

fT (t) = 2πλν2te−λπν
2t2 , t ≥ 0. (4)



2) If V is uniformly distributed on [vmin, vmax], the pdf of
transition time T is

fT (t) =
g(vmin)− g(vmax)

(vmax − vmin)t
, t ≥ 0, (5)

where g(x) = xe−λπt
2x2

+
1

λ1/2t
Q(
√

2πλtx) is non-

increasing, and Q(x) =
1√
2π

∫ ∞
x

e−
u2

2 du.

We now derive the mean of transition time which will be
used later. Instead of applying the cdf of T , we notice that

E[T ] = E[
L

V
] = E[L]E[

1

V
] =

1

2
√
λ

∫
V

1

v
dPV (v) (6)

From (6), we can easily obtain that E[T ] =
1

2ν
√
λ

if V ≡ ν.

C. Spatial node distribution

In this subsection, we study spatial node distribution. To
this end, let X0 and X1 be two successive waypoints. Given
X0, we are interested in the probability that the moving
node resides in some measurable set A during the movement
from X0 to X1. For brevity, we only give the spatial node
distribution with the assumption that the mobile node does not
have pause time.
Theorem 1. Assume that Sn ≡ 0,∀n, and that X0 is at the
origin. Then the spatial node distribution between X0 and X1

is characterized by the pdf f(r, θ) given by

f(r, θ) =

√
λ

πr
exp(−λπr2) (7)

Proof: See Appendix A.
The physical interpretation of f(r, θ) goes as follows. Let

dA(r, θ) be a small area around the point (r, θ) under the polar
coordinate. Then the probability P (dA(r, θ)) that the moving
node resides in some measurable set A during the movement
from X0 to X1 is approximately given by

P (dA(r, θ)) ≈ f(r, θ) · |dA(r, θ)| (8)

where |dA(r, θ)| denotes the area of the set dA(r, θ). Also, as
noted in the proof in Appendix A, f(r, θ) can be regarded as
the ratio of the expected proportion of transition time in the
set dA(r, θ) to the area |dA(r, θ)|.

IV. APPLICATION TO CELLULAR NETWORKS:
A HANDOVER STUDY

In this section, we study the impact of mobility on handover
rate using the proposed model. Handover rate is formally
defined as follows.
Definition 1. The handover rate is defined as the expected num-
berE[N ] of handovers during one movement period divided by
the expected transition time. Mathematically, handover rate is
given by H = E[N ]/E[T ].

Handover rate is directly related to network signalling
overhead. Clearly, handover rate is low in large cells. How-
ever, large cells impose higher requirement on other network

resources such as transmit power and spectrum. Thus, analytic
results on handover rate is useful for network dimensioning.
For brevity, we only consider the scenario with constant
velocity, i.e., V ≡ ν.

A. Hexagonal model

In this subsection, we focus on hexagonal cellular networks.
We assume the typical mobile user is located at the origin.
Then the expected number of handovers during one movement
period can be computed as

E[N ] =

∞∑
n=1

n

∫
Cn

P (dA(r, θ)) (9)

where P (dA(r, θ)) is the probability distribution of the way-
point density fX1(r, θ) given in Lemma 1 and Cn denotes the
area covered by the n-th layer neighbouring cells. However,
exact computation of N by (9) is tedious. Thus, we propose
the following approximation formula

E[N ]app =

∞∑
n=1

n

∫ 2π

0

∫ (2n+1)R

(2n−1)R

fX1
(r, θ)rdrdθ (10)

where R =
√
C/π with C being the hexagonal cell size,

i.e., we approximate the n-th neighbouring layer by a ring
with inner radius (2n− 1)R and outer radius (2n+ 1)R. This
approximation captures the essence of (9) and yields Prop. 2

Proposition 2. Let d be the side length of the hexagonal
cell and λ the mobility parameter. The expected number of
handovers during one movement period E[N ]app is given by

E[N ]app =

∞∑
n=0

exp

(
−3
√

3

2
(2n+ 1)2λd2

)
(11)

and is bounded as E[N ]Lapp ≤ E[N ]app ≤ E[N ]Uapp where

E[N ]Lapp ,
√

π

6
√

3λd2
Q

(√
3
√

3λd2

)
(12)

E[N ]Uapp ,
√

π

6
√

3λd2

(
1−Q

(√
3
√

3λd2

))
(13)

Moreover, the difference4Napp(λd2) between the upper bound
and lower bound is a strictly increasing function of λd2

and is within the range (0, 1). In particular, 4Napp(λd2) →
0 as λd2 →∞, and4Napp(λd2)→ 1 as λd2 → 0.

Using Prop. 2, the handover rate and the corresponding
bounds readily follow by further dividing the expected tran-
sition time E[T ] which has been derived in Section III-B. In
particular, when d→ 0,

Happ ∼
√

π

6
√

3

ν

d
+ o(1). (14)

Though derivation by (9) is not tractable, the exact handover
rate in hexagonal model can be obtained using generalized
solution of Buffon’s needle problem [15] as follows.

Proposition 3. Let d be the side length of the hexagonal
cell and λ the mobility parameter. The expected number of



handovers E[N ] during one movement period is

E[N ] =
2
√

3

3πd

√
1

λ
(15)

The handover rate H = E[N ]/E[T ] is then given by

H =
4
√

3

3π

ν

d
(16)

We remark that the insights obtained by either approximate
or exact approach are the same. Note that the hexagonal cell
size sH is given by 3

√
3d2/2 in hexagonal tiling. So (14) can

be written as Happ ∼
√

π
4

ν√
sH

. Similarly, the exact method

yields H = 4
π

√√
3

2
ν√
sH

. Both results imply that handover rate
is inversely proportional to the square root of cell size sH .

B. Poisson-Voronoi model

In this subsection, we focus on cellular networks modeled
by Poisson-Voronoi tessellation [10]. We first give a brief
description of Poisson-Voronoi tessellation. Consider a locally
finite set φ = {xi} of points xi ∈ R2, referred to as nuclei.
The Voronoi cell Cxi

(φ) of point xi is defined as

Cxi
(φ) = {y ∈ R2 :‖ y − xi ‖2≤‖ y − xj ‖2,∀xj ∈ φ}.

Let εx be the Dirac measure at x, i.e., for A ∈ R2, εx(A) = 1
if x ∈ A, and 0 otherwise. Then spatial point process Φ can
be written as Φ =

∑
i εxi

, and Poisson-Voronoi tessellation is
defined as follows [16].

Definition 2. For a spatial Poisson point process Φ =
∑
i εxi

on R2, the union of the associated Voronoi cells, i.e., V(Φ) =
∪xi∈ΦCxi(Φ), is called Poisson-Voronoi tessellation.

In cellular networks modeled by Poisson-Voronoi tessella-
tion, the BSs are the nuclei located according to some PPP
Φ in R2. Besides, each BS xi serves mobile users which are
located within its Voronoi cell Cxi

(Φ). The latter assumption is
equivalent to the hypothesis of nearest BS association strategy.
In the sequel, we also assume that PPP Φ modeling the
deployment of the BSs is homogeneous and its intensity is
denoted by µ. Then we can prove Prop. 4.

Proposition 4. Let µ be the intensity of the homogeneously
PPP distributed BSs and λ the mobility parameter. The expected
number of handovers E[N ] during one movement period is

E[N ] =
2

π

√
µ

λ
(17)

The handover rate H = E[N ]/E[T ] is then given by

H =
4

π
ν
√
µ (18)

The insight obtained here is consistent with those of regular
hexagonal tessellation. In Poisson-Voronoi tessellation with
the nuclei being homogeneous PPP Φ of intensity µ, the
expected value of the size sH of typical Voronoi cell is given
by sH = E[|Co(Φ)|2] = 1/µ [7], where Co(Φ) is the typical
cell and |Co(Φ)|2 denotes the area of Co(Φ). So H can be
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Fig. 2. Handover in Poisson-Voronoi model with velocity ν ≡ 1.
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Fig. 3. Impact of BS density on handover rate: velocity ν ≡ 1, BS intensity
µ = 1 and mobility parameter λ = 1.

written as H =
4

π
ν/
√
sH , which implies that handover rate

is inversely proportional to the square root of cell size. This is
consistent with the results in hexagonal model. Also, we note
that the handover rate H = 4

πν
√
µ has been derived in [17]

using heuristic arguments rather than a formal proof.
Fig. 2 illustrates that the analytical result (17) matches the

simulation result quite well. Also, we compare the handover
rate of Poisson-Voronoi model, exact and approximate han-
dover rate of hexagonal model in Fig. 3 as a function BS
intensity. They all indicate that handover rate grows linearly
with the square root of the BS intensity

√
µ.

We finally evaluate the three types of analytic results on
handover by simulating the proposed RWP mobility model
using the real-world data of macro-BS deployment in a cellular
network. The results are shown in Fig. 4. It can be seen
that Poisson-Voronoi model is about as accurate as hexagonal
model in predicting the number of handovers. Meanwhile,
the approximate analytic result underestimates the number of
handovers but more accurate in high λ region.

V. CONCLUSIONS

In this paper, we study mobility in cellular networks. To this
end, we first propose a tractable RWP mobility model defined
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on the entire plane. Key properties of the mobility model
are carefully studied and (semi-)closed form expressions are
obtained. Then we utilize this tractable mobility model to
analyze the handover rate in cellular networks. The analysis
is carried out for cellular networks under both hexagonal
and Poisson-Voronoi models. The obtained analytic results are
instrumental for mobility management in cellular networks.

APPENDIX

A. Proof of Theorem 1

We first derive the pdf of the random waypoint X1 =
(R1,Θ1), which is summarized in Lemma 1.
Lemma 1. Given X0 is at the origin, the pdf of the random
waypoint X1 = (R1,Θ1) is given by

fX1(r, θ) = λ exp(−λπr2) (19)

Lemma 1 can be derived as follows:

fX1
(r, θ) = lim

∆r→0

P (R1 ≤ r + ∆r)− P (R1 ≤ r)∫ 2π

0

∫ r+∆r

r
xdxdφ

= lim
∆r→0

exp(−λπr2)− exp(−λπ(r + ∆r)2)

2πr∆r
= λ exp(−λiπr2)

We next derive the pdf of the spatial node distribution. The
main technique used is inspired by [18]. Consider a small set
dA located at (r, θ). Let ~L1 denotes the vector X1−X0 and
|~L1| = L1. Then the pdf of the spatial node distribution can be
interpreted as the ratio of the expected proportion of transition
time in the set dA to the area |dA|, i.e.,

f(r, θ) =
E[|~L1 ∩ dA|/V ]

E[L1/V ]|dA|
=
E[|~L1 ∩ dA|]
E[L1]|dA|

(20)

Note that

E[|~L1 ∩ dA|]
|dA|

=

∫∞
r
fX1(x, θ) xdxdθ ·∆l

r · dθ ·∆l

=

∫∞
r
λ exp(−λπx2)xdx

r
=

1

2πr
exp(−λπr2) (21)

where ∆l denotes the length of the small intersection if ~L1

intersects dA, and we apply Lemma 1 in the second equality
in (21). The first equality in (21) follows since

E[|~L1 ∩ dA|] = ∆l ·
∫ ∞
r

fX1
(x, θ) xdxdθ (22)

and |dA| = r · dθ ·∆l. So

f(r, θ) =
exp(−λπr2)

2πrE[L1]
=

√
λ exp(−λπr2)

πr
(23)

where we use the result that E[L1] = 1/2
√
λ in the last

equality. This completes the proof.
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