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Transmission Capacity of Carrier Sensing
Ad Hoc Networks with Multiple Antennas

Andrew M. Hunter, Radha Krishna Ganti, and Jeffrey G. Andrews

Abstract—Multiple antennas have become a common compo-
nent of wireless networks, improving range, throughput, and
spatial reuse, both at the link and network levels. At the same
time, carrier sensing is a widely used method of improving spatial
reuse in distributed wireless networks, especially when there is
limited coordination among non-communicating nodes. While
the combination of carrier sensing and multiple antennas has
been considered in the literature, physical layer spatial models
and the attendant consequences have not been included. The
primary reason for this has been the difficulty of analyzing
functionals of interacting point processes. Having developed new
methods of quantifying physical layer performance with robust
spatial network models, we use these techniques to address the
following questions: What multiple antenna techniques produce
the best network performance, and what is the performance
gain? And, how should multiple antennas interact with carrier
sensing parameters? Overall, the analysis confirms the significant
benefit of multiple antennas in distributed wireless networks.

I. INTRODUCTION

As the number of wirelessly connected devices grows,
so will the need for these devices to create flexible, de-
centralized networks. At the same time multiple antennas
and carrier sensing-based medium access are two common
performance enhancing features of modern wireless systems,
even in energy- and cost-constrained systems. Theoretical
studies of decentralized networks with carrier sensing have
struggled with the analytical expressions for the interference
of correlated point processes, difficulties which are only com-
pounded by more complicated physical layers. In this paper
we develop a model to link key carrier sensing parameters
to environmental and network performance parameters in
wireless ad hoc networks of nodes equipped with adaptive
multi-antenna radios.

A few studies have approached the difficult problem of
medium access control (MAC) analysis in random spatial
field of interference including [1], [2], [3], and [4], while
at the same time [5], [6], and [7] have considered multi-
antenna (MIMO) radios, though they have focused mainly
on the Aloha case. As a point of comparison, the study [5]
developed a particular coordinated protocol as a comparison
point against Aloha. The present work develops a new model
for the combination of a multiple-antenna physical layer with
a tunable CSMA model which includes Aloha as a special
case. This allows the interaction of MIMO and CSMA to
be studied and provides a framework for determining which
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MIMO configurations yield the highest gains for carrier-
sensing networks as a whole, as well as enabling comparisons
against Aloha.

II. SYSTEM MODEL

For the underlying physical layer model, we consider a set
of nodes, each having similar radios, randomly distributed on
R2, communicating in a slotted system without any central
controller. The nodes are assumed to be distributed as a spatial
Poisson point process prior to the operation of any medium ac-
cess mechanism. A path loss exponent of α characterizes large
scale fading, while small scale fading is Rayleigh between any
pair of antennas. The analysis will focus on a typical receiver
located at the origin with its intended transmitter a distance
R away.

At the physical layer, a transmission is assumed to be
successful if the SINR is greater than some target threshold
θS, where the SINR is given by the expression:

SINR =
SoR

α∑
j∈Φt

Sjd
−α
j + 1

SNR

, (1)

where So is the fading signal level at the detection point, and
Sj and dj are the fading interference level and distance to
the jth interferer, respectively, and Φt is the point process of
actively interfering nodes around a typical receiver. Given that
θS is met over a slot, the achievable rate will be log2(1+θS).

A. Performance Metrics

Ultimately, the principal design goal is to maximize net-
work sum throughput, or equivalently, area spectral efficiency.
However, recognizing that physical layer implementation and
user experience cannot abide degenerate cases, two types
of quality requirements are introduced. First, as mentioned
above, a target SINR θS is required on any particular at-
tempted transmission, which results in an outage if not met.
Second, the outage probability ϵ can also be taken as a
constraint on any given link or transmission. Transmission
capacity is defined as the mean density of successful trans-
missions that can occur with given quality constraints (i.e.,
θS, and ϵ are satisfied). Given the success probability function
PS(λt), the transmission capacity is

TC = argmax
λt

λt ·PS(λt). (2)

Lastly, area spectral efficiency is the transmission capacity
scaled by the data rate achieved in each of those transmissions:
Mt log2(1 + θS)λt ·PS(λt), where Mt is the number of data
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streams transmitted on each link. For simplicity of presen-
tation, when multiple antennas are used at the transmitter
for spatial multiplexing we assume two things: first, each
spatial mode will treated as a separate transmission, carrying
a separate packet and decoded separately. Second, the same
outage constraint will be applied across all modes of all links
independently. More elaborate arrangements of modes and
outages can be devised and analyzed, but these necessarily
lead to more cumbersome expressions best considered outside
the space here.

B. The MIMO Channel

Each transmitter has Nt and each receiver has Nr antennas
to decode Mt ≤ min{Nt, Nr} independent transmitted data
streams. In Rayleigh fading, the channel between the receiver
of interest and its intended transmitter is R−α

2 H which is
an Nt × Nr matrix of i.i.d. complex Gaussian entries with
unit variance scaled by a power-law path loss factor. This
channel can be decomposed into spatial modes by means of
its SVD when channel state information (CSI) is available
at the transmitter, while in the absence of transmitter CSI,
the receiver can decode equal power and rate streams by
various techniques including zero-forcing (ZF) or maximal-
ratio-combining [5]. The ZF beamforming solution for a
receiver with CSI is the pseudo-inverse: (HHH)−1HH , where
·H denotes the Hermitian transpose.

The results here will be restricted to the case of open-
loop zero-forcing multiplexing methods. A number of other
techniques with and without CSI at the transmitter follow very
similar expressions, but this provides a rich enough set of
options to demonstrate the relationships between CSMA and
MIMO techniques.

C. “Soft” Carrier Sensing

We consider a “soft” CSMA model which takes into ac-
count two effects:

1) Large-scale density λt of transmitters.
2) Shot range inhibition.

Large-scale density : We use a Matern model similar to [1]
for obtaining the final density of transmitters. In this model
each node is associated with a set N̂ consisting of transmitters
which individually cause an interference greater than θM. A
node is finally selected to transmit if its timer (a uniform
random variable in [0, 1]) is the smallest. Given an initial
density λi of nodes attempting to access the channel, after
carrier sensing the resulting large-scale density λt is [1]

λt = λi ·
1− exp(−N )

N
, (3)

where N is the average number of nodes in a typical con-
tention set N̂ and equals

N =

∫
R2

λi · e−θM|x|αdx,

= πΓ(1 + 2/α)θ
−2/α
M λi. (4)

R
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Fig. 1. Contention around the typical receiver. Fading and channel sensing
errors lead to a “soft” CSMA model unlike the corresponding hard care
boundary marked here.

Shot range inhibition: We make a further approximation
that from the perspective of a typical receiver, the set of
interferers is distributed around it as a radially symmetric in-
homogeneous Poisson process with density (1−e−θM|X|α)λt,
where λt is the average density of the set of currently transmit-
ting nodes. e−θM|X|α is the probability that an exponentially
distributed power fade will exceed a threshold θM at that
distance. The average density is all that is necessary to model
the interference contribution from nodes at long distances,
while at close ranges the presence of the communicating
node has the dominant effect on the distribution of interferers.
Furthermore, the model treats the channel through which
carrier sensing decisions were made as independent of the
Poisson shot noise interference process of data transmission.
In this sense the carrier sensing is “soft,” being neither an
exact geographic disk, nor exactly representative of mutually
interfering nodes during data communication.

Final model: From the perspective of a typical receiver the
interferers form a non-homogeneous Poisson point process of
density (1− e−θM|X|α)λt. This model has several advantages
over the hard-core model: First, it brings fading into play
when modeling carrier sensing. Second, it allows for modeling
imperfect carrier sensing. Third, it enables modeling of a
behavior specific to multi-antenna systems in which network
interference differs between the control/carrier sensing modes
and high data rate modes. Lastly, it provides more tractable
results that give simpler functional relationships between the
carrier sensing parameters and other environmental and sys-
tem parameters. In addition, a model in which the probability
of inhibition rises at least as fast as the power-law path loss
function results in the interference power from the nearest
interferer having finite mean. This removes problems related
to the behavior of the path loss model near the origin (a feature
shared by the Matern hard-core model).

D. CSMA Sensing with Multiple Antennas

Another way a CSMA ad hoc network can take advantage
of multiple antennas is in the carrier sensing itself. When
the carrier sensing mechanism is subject to fading, more
conservative thresholds must be met to guarantee outage
requirements. One approach which is readily tractable in the
current model is to use selection or combining diversity on
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Fig. 2. Comparison of throughput and outage for CSMA and Aloha, for SISO system. Density is initial density, i.e., before thinng via carrier sensing.
Outage is counted among active transmitters (i.e., those not thinned by CSMA). Parameters were R = 1, α = 4, θS = 0dB.

multiple receive antennas for carrier sensing and to impose
a threshold on the selected or combined output (the former
approach being appropriate when CSI over the control channel
is difficult to obtain). As an example, suppose a node with
Mc multiple receive antennas performs carrier sensing on
each antenna, but averages the results across antennas before
applying the threshold. In this case

N =

∫
R2

λi · e−θMMc|x|α
Mc−1∑
k=0

(θMMc|x|α)k

k!
dx

=
2π

α
θ
− 2

α

M λi

Mc−1∑
k=0

Γ( 2
α + k)

M
2
α
c Γ(k + 1)

. (5)

Note that in the limit of a large number of antennas, the
carrier sensing behavior approaches that of a hard-core process
as the influence of small scale fading on sensing decisions
disappears. While channel hardening techniques make the
carrier sensing mechanism more efficient, primarily by reduc-
ing errors due to deep fades, the net benefit turns out to be
small (in particular small compared to the benefit of CSMA
over Aloha). Therefore, for the main analysis of multiplexing
systems, a SISO carrier sensing channel is assumed.

III. OPEN-LOOP SPATIAL MULTIPLEXING WITH CSMA

We now state the central result of the paper which deals
with the probability of success or equivalently the SINR
distribution.

Theorem 1: Given a network of nodes performing CSMA,
open-loop spatial multiplexing, and with per-stream decoding
success defined in (1),

PS(θS) =

Nr−1∑
k=0

[
(−s)k

k!

dk

dsk
LIΦ(s)e

− 1
SNR (s)

]
s=NtθSRα

,

where

LIΦ(s) = exp

{
−2π

α
(s/Nt)

2
αλt[C

α
Nt

− TM(s)]

}
Cα

Nt
=

Nt∑
i=1

(
Nt

i

)
B(Nt − iα, iα)

TM(s) =

Nt∑
i=1

(
Nt

i

)
Γ(Nt − iα)U

(
Nt − iα, 1− iα,

θM
Nt

s

)
with iα = i− 2/α for notational convenience and B(x, y) =
Γ(x)Γ(y)
Γ(x+y) being the beta function, and where U(a, b, x) =
1

Γ(a)

∫∞
0

e−xtta−1(1 + t)b−a+1dt is Kummer’s confluent hy-
pergeometric U -function.

Proof: See the appendix, which develops these expres-
sions using techniques similar to those of [1] and [6]. In
addition the appendix derives an efficient method of evaluating
the derivatives both symbolically and numerically.

Again we note that as s → ∞, U(a, b, s) → 0 and thus
TM → 0 which corresponds to the Aloha case. As s → 0,
Γ(a)U(a, b, s) → B(a, b), which implies that TM → Cα

Nt
as

the threshold θM → 0. In this case the probability of success
approaches 1 among active transmitters, at the expense of λt

vanishing.

A. Optimal CSMA threshold
Specializing Theorem 1 to the case Nr = Nt = 1, we

obtain the success probability in a SISO system as

PS(θS) = exp
{
−θ

2/α
S R2λt [C(α)− TM]

}
e−θSR

α/SNR,

where C(α) = πΓ(1+ 2/α)Γ(1− 2/α) is the familiar Aloha
constant and

TM =
2π

α
eθMθSR

α

Γ

(
1− 2

α
, θMθSR

α

)
(6)
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the two-parameter gamma function being the upper incom-
plete gamma function. Note that TM is a factor related to
the carrier sensing threshold, but also that λt is dependent
on this threshold. This expression holds for any outage level
or transmitter density. As the inhibition threshold rises so that
very few nodes are inhibited, λt → λi and TM → 0 recovering
the Aloha result [1]. Note also that with a fixed threshold

lim
λi→∞

λt,∞ =
(
πΓ(1 + 2/α)θ

−2/α
M

)−1

, (7)

which indicates that regardless of the number of users request-
ing access, the carrier sensing process limits the set of active
transmitters to a limiting density, as it should.

A natural question then is to find the optimal carrier
sensing threshold. The optimum threshold is then the unique
maximum to:

θ∗M = argmax
θM

λt · exp
{
−θ

2/α
S R2λt [C(α)− TM]

}
. (8)

This expression is log-concave in θM and hence is relatively
easy to optimize numerically. At this point there are a few
observations that can be made to assist further analysis: First,
as λi → ∞ the optimum threshold approaches a limit which
is the unique solution to 8 at λt,∞. Second, as λi becomes
small, for a fixed threshold, very little inhibition takes place
and the sum throughput performance of Aloha and CSMA
are nearly identical1 so that there is very little difference in
an optimum versus a non-optimum threshold. Hence, a useful
approximation is to consider the optimum threshold for any
initial density to be roughly equal to that for the limiting
density λt,∞.

Lastly, as λi → 0, the network is sparse enough that
very little inhibition takes place and λt → λi, and the
spatial density of transmissions can be related to the outage
probability:

λt =
ϵ

θ
2/α
S R2

· 1

[C(α)− TM]
+ o(ϵ2). (9)

The factor TM is always less than or equal to C(α), and
hence carrier sensing with an appropriate threshold represents
a strict improvement over Aloha. For the multiple antenna
case, the optimum θM can be found numerically. As in the
single-antenna case, the optimum threshold reaches a limit as
λi grows large, which is a relatively good selection at all.

IV. EXAMPLES AND DISCUSSION

Fig. 2 compares throughput and outage of CSMA and Aloha
for the base SISO case. Here the CSMA is not fully optimized,
but rather has a fixed threshold for all initial contention
densities. Note that the figures plot throughput and outage
versus the initial contention density, prior to thinning via
carrier sensing, in order for the comparison with Aloha to be
fair, and this convention was used for all plots in the paper.

1This is very different from saying that the transmission capacity at a fixed
outage is nearly the same for both. At a fixed λi, if Aloha experiences 1%
outage, then CSMA can increase throughput at the same λi by no more than
1% at best. On the other hand, for a fixed 1% outage constraint, CSMA can
maintain a substantially greater λt than Aloha can.

Fig. 3. Comparison of throughput for CSMA at a high base SNR. Note that
no outage constraints are imposed. Parameters were R = 1, α = 4, θS =
0dB.

Fig. 4. Throughput vs. initial density for 4-antenna systems with optimized
CSMA and an outage constraint of 10% Parameters were R = 1, α =
4, θS = 0dB, SNR= 10dB.

Fig. 3 compares 4-antenna MIMO configurations at a high
base SNR (with fully optimized CSMA). Fig. 4 compares 4-
antenna MIMO configurations with a relatively small outage
constraint applied. These curves demonstrate several distinc-
tions between the performance of CSMA networks versus
Aloha networks. The first is simply that as the initial con-
tention density increases, CSMA throughput overtakes Aloha
substantially and reaches a non-zero plateau. Furthermore,
comparing throughput levels for Fig. 2 and Fig. 4, it becomes
clear that CSMA MIMO systems achieve a higher throughput
at substantially lower outage among transmitting nodes. This
can substantially reduce the burden on PHY layer decoding
implementations and conserve energy. In particular, note that
a 1×3 antenna configuration with an optimized threshold can
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achieve a network throughput equivalent to the best Aloha
configuration but with a fourfold reduction in the outage
probability.

V. CONCLUSION

This paper developed a model for CSMA and its interaction
with multiple antennas in ad hoc wireless networks. The
results confirm the benefit of CSMA and MIMO techniques
in ad hoc networks, alone or in tandem. First, the throughput
at any contention density is superior for optimized CSMA
systems over their Aloha counterparts. Second, the carrier
sensing mechanism results in a throughput plateau which is
maintained with fixed operting parameters, unlike Aloha, even
as network access requests increase. Third, CSMA systems
achieve a higher throughput at substantially lower outage
among transmitting nodes. And lastly, CSMA improves the
environment for spatial multiplexing, in certain cases making
a higher number of data streams more attractive at any spatial
traffic density.

APPENDIX

For a given stream at the receiver using the ZF
solution So ∼ Gamma(Nr, 1/Nt) with F c

So
(x) =

e−Ntx
∑Nr−1

k=0
(Ntx)

k

k! so that

PS(θS) = P

(
SoR

−α∑
i∈Φ Sid

−α
i + 1

SNR

> θS

)

=

∫ ∞

0

F c
So
(θSR

αt)fIΦ+ 1
SNR

(t)dt

=

Nr−1∑
k=0

1

k!

∫ ∞

0

(st)ke−s·tfIΦ+ 1
SNR

(t)dt

=

Nr−1∑
k=0

[
(−s)k

k!

dk

dsk
LIΦ(s)L 1

SNR
(s)

]
s=NtθSRα

,

where the Laplace transform of the sum of the random
variables is the product of the transforms. Now L 1

SNR
(s) =

e−s/SNR and if in addition Si ∼ Gamma(Nt, 1/Nt) as
in open-loop multiplexing across the network, the Laplace
transform of the Poisson shot noise is

LIΦ(s) = exp

{∫
R2

(
ESi

[
e−Si|x|−αs

]
− 1
)
dΦ

}
= exp

{
−2πλt

∫ ∞

0

u

(
1− 1

(1 + s/Ntuα)Nt

)
×(1− e−θMuα

)du
}

= exp

{
−2π

α
θ

2
α

S R2λt

Nt∑
i=1

(
Nt

i

)
[B(Nt − iα, iα)−

Γ(Nt − iα)U(Nt − iα, 1− iα, θMθSR
α)]}

= exp

{
−2π

α
θ

2
α

S R2λt[C
α
Nt

− TM]

}
.

Our last task is to find an explicit and efficient method
of calculating derivatives of these Laplace transforms. For

this we turn to Faà di Bruno’s formula for derivatives of
composite functions dk

dsk
f(g(s)), which can be represented

as a determinant [8]:

dk

dsk
f(g(s)) = detM f(g(s))

for the k × k matrix

M =


g(1)D −1 0 0 . . .
g(2)D g(1)D −1 0 . . .
g(3)D 2g(2)D g(1)D −1 . . .
g(4)D 3g(3)D 3g(2)D g(1)D . . .

...
...

...
...

 ,

where Dkf(g(s)) = f (k)(g(s)), and where the coefficients
applied to each row are rows of Pascal’s triangle. To apply
Faà di Bruno’s formula to the derivatives of LIΦ(s)L 1

SNR
(s),

we can write LIΦ(s)L 1
SNR

(s) = f(g(s)), where f(s) = es

and g(s) = log
(
LIΦ(s)L 1

SNR
(s)
)

whose derivatives are (for
k > 1):

g(k)(s) = −2π

α
λt(s/Nt)

2
α−k

Cα
Nt

k−1∏
j=0

(
2

α
− j

)
−

Nt∑
i=1

k∑
j=0

Kijks
jU

([
Nt − iα + j

1− iα + j

]
,
θM
Nt

s

) , (10)

where

Kijk = (−θM/Nt)
j

(
Nt

i

)
Γ(Nt − iα)

(
k

j

)
(Nt − iα + j)j

k−j−1∏
n=0

(
2

α
− n

)
.

To accomplish this we needed the relation for the nth
derivative of U(a, b, x) which is easily expressible as
dn

dxnU(a, b, x) = (−1)n(a)nU(a + n, b + n, x) where (·)n is
the Pochhammer symbol for the rising factorial.
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