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Abstract—An ideal full-duplex relay doubles the achievable
data rate compared to a half-duplex relay. However, in practice,
the self-interference and processing delay induces an ISI channel
between the source and the destination nodes. In this paper, we
study the outage performance of a full-duplex relaying network
with amplify-and-forward scheme. In contrast to prior work, we
include the direct link from the source to destination, and analyze
the distribution of the end-to-end signal-to-noise ratio (SNR) with
the minimum mean squared error decision feedback equalizer.
We observe that the direct link provides a significant SNR gain,
and including it is particularly important for self-interference
combating at the receiver.

I. INTRODUCTION

Full-duplex relaying is a lucrative way of doubling the
achievable rate compared to a half-duplex relay. There has
been substantial work on ideal full-duplex relays, which can
transmit and receive at the same frequency and same time.
However, current full-duplex nodes [1], [2] are far from
being ideal. While current implementations achieve almost
80−100 dB cancellation , because of the analog and RF circuit
imperfections, the transmit signal cannot be canceled entirely
and interferes with the received signal. This interference from
the relay node’s own transmitting signal is termed as residual
self-interference (RSI).

While relaying with an ideal full-duplex node (relay) has
been well understood, the analysis of non-ideal full-duplex
relaying is complicated because of self-interference. Even
with flat-fading channels, the self-interference induces an
ISI channel, thus reducing the effective signal-to-noise ratio
(SNR) [3] at the destination. Hence with self-interference, it
is intuitive that the direct link from source to destination can
aid in improving the effective SINR. In this paper, we analyze
a relay network with a non-ideal full-duplex relaying node
along with a direct source-destination link.

Related work: The probability density function (PDF) of
SNR in a half-duplex relay (HDR) network has been obtained
in [4] for the amplify and forward scheme, using which
system metrics like outage probability and ergodic capacity
are calculated.

Mode selection between full-duplex nodes and half-duplex
nodes has been considered in [5] with the amplify-and-forward
protocol. A trade-off between the self-interference and the
spectral efficiency is obtained, using which the maximum
tolerable self-interference (compared to the performance of a
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Figure 1: AF Full Duplex Relay Model.

HDR) is computed. Full-duplex relay networks with decode-
and-forward protocol is considered in [6]. However instanta-
neous self-interference cancellation is assumed, which is not
true in practice. In [3], processing delay is included which
leads to an ISI channel when FDR is used. MMSE-DFE
equalization is used to remove the ISI. However, direct link is
neglected for the equalization. Two way full-duplex relaying
with optimal power allocation is considered in [7], where the
source, the relay and the destination are assumed to be full-
duplex nodes.

In this paper, we consider a full-duplex relay network
with processing delay along with the direct link. Due to the
processing delay at the relay node and the self-interference,
the equivalent channel between the source and destination is
shown to be an ISI channel. We obtain the exact distribution
of the effective SNR at the receiver when ISI is considered
as noise. We also obtain bounds on the SNR distribution with
the MMSE-DFE equalizer.

The rest of the paper is organized as follows: In Section
II, the system and signal model are described. In Section III,
analysis is carried out treating the RSI as noise. In Section IV,
the equalization of RSI with the direct link is considered.978-1-4799-6619-6/15/$31.00 c© 2015 IEEE



II. SYSTEM AND SIGNAL MODEL

A. System Model and Notation

We consider a source, a full-duplex relay (FDR) and a
destination as in Fig. 1. The destination is at a distance dsd
from the source. The horizontal distance of the relay from the
source is taken to be kdsd where 0 < k < 1 and the vertical
distance of the relay is taken to be xdsd where x > 0. The
channels from source to destination hsd, source to relay hsr,
relay to destination hrd and the self interference channel from
relay to relay hrr are modeled as complex Gaussian channels
with zero mean and variance σ2

ij i.e. ∼ CN (0, σ2
ij) where

i ∈ {s, r}, j ∈ {r, d}, i 6= j. The variance is modeled as
σ2
ij = cd−αij where c is constant, α is the path loss exponent

and dij is the distance between node i and j, i 6= j. The
variance of the relay self-interference channel hrr is denoted
Ωr.

The symbols are sent in a block, and the channels described
above remain constant for the entire block. The relay is as-
sumed to know the gain hsr and hrr. Similarly, the destination
is assumed to know the channel gains hsd, hrr and hrd. The
noise added at the relay nr[n] and at the destination nd[n]
are complex AWGN with zero mean and variance σ2 i.e.
∼ CN (0, σ2). The average transmit power at the source and
the relay are Ps and Pr, respectively.

The signal-to-noise ratio (SNR) of the link from node i to
j, denoted γij , is seen to be γij = Pi|hij |2/σ2. Clearly, γij
are exponentially distributed with mean Piσ

2
ij/σ

2 for i 6= j
and PrΩrr/σ

2 for i = j = r. The notation E[.] denotes the
expectation.

B. Signal Model

The received signal at the relay is

yr[n] = hsr
√
Psxs[n] + hrr

√
Prxr[n] + nr[n], (1)

where xs[n] and xr[n] are the transmitted symbols from
the source and the relay, respectively, at time n. To sat-
isfy the power constraint, we require E[|xr[n]|2] = 1 and
E[|xs[n]|2] = 1.

We consider the amplify-forward protocol at the relay with
the assumption that the processing delay at the relay is one
symbol period. So, the transmitted signal from the relay is

xr[n] = gfyr[n− 1], (2)

where the relay gain gf is chosen such that the average
transmitter power at the relay is Pr. From (1), we see that

E[|yr[n]|2] = Ps|hsr|2 + Pr|hrr|2 + σ2, (3)

where the fact that E[|xs[n]|2] = E[|xr[n]|2] = 1 is used.
Using (3) in (2), the relay gain is computed to be

gf =

(
1

Ps|hsr|2 + Pr|hrr|2 + σ2

)− 1
2

. (4)

Substituting (2) in (1) and the previously received symbols
yr[n− τ ], τ ≥ 1 recursively, we get that

yr[n] =

∞∑
k=0

(
√
Pshsr)(

√
Prgfhrr)

kxs[n− k]

+

∞∑
k=1

(
√
Prgfhrr)

k−1nr[n− k] + nr[n]. (5)

The received signal at the destination yd[n] = hsd
√
Psxs[n]+

hrd
√
Prxr[n] + nd[n] can be written as

yd[n] = hsd
√
Psxs[n]

+

∞∑
k=1

(
√
Prgfhrd)(

√
Pshsr)(

√
Prgfhrr)

k−1xs[n− k]

+

∞∑
k=1

(
√
Prgfhrd)(

√
Prhsr)(

√
Prgfhrr)

k−1nr[n− k]

+ nd[n], (6)

where we have used the expression for yr[n] in (5). The dif-
ferent terms in the expression for yd[n] are readily interpreted
as follows. The term hsd

√
Psxs[n] in the first line is due to

the direct link. The term in the second line is the relay self-
interference (RSI) term, which is a filtered version of the signal
xs[n] because of the amplify-forward protocol. The third line
is the filtered version of the noise at the relay.

III. TREATING RSI AS NOISE

In this section, we treat the RSI term in yd[n] as noise in the
processing at the receiver. Under this assumption, the average
throughput performance of a half-duplex relay (HDR) and a
full-duplex relay (FDR) are compared so as to deduce how
well FDR performs even by treating RSI as noise.

Using (1) and (2), yd[n] can be written as

yd[n] = hsd
√
Psxs[n] + gfhrd

√
Pr(hsr

√
Psxs[n− 1]

+hrr
√
Prxr[n− 1] + nr[n− 1]) + nd[n]. (7)

In (7), treating the RSI term hrr
√
Prxr[n − 1] as noise, the

end-to-end SNR at the destination, denoted γf , is given by

γf =
|hsd|2Ps + g2

f |hsr|2|hrd|2PrPs
g2
f |hrd|2Pr(|hrr|2Pr + σ2) + σ2

. (8)

Substituting the value of relay gain from (4) and expressing
in terms of γij , i ∈ {s, r} and j ∈ {r, d}, we get

γf =
γsd(γsr + γrr + 1) + γsrγrd
γrd(γrr + 1) + (γsr + γrr + 1)

. (9)

We now compute the CDF of γf that will be subsequently used
to compute the outage probability and the average throughput.

Lemma 1. The CDF of end-to-end SNR γf is given by
Fγf (ΓT ) =

1−
ˆ 0

−1

exp

(
λrdΓT
β

)
ga(β)dβ −

ˆ ΓT

−1

λrdga(β)e(−λsdΓT )

βλsd + λrd
dβ

+ λrd

ˆ 0

−1

e

(
ΓT
a (βλsd+λrd)

)
−λsdΓT

βλsd + λrd
ga(β)dβ,



where

ga(β) = exp

(
−λsr(ΓT − β)

β + 1

)
λsrλrr(ΓT + 1)

λrr(β + 1) + λsr(ΓT − β)[
1

λrr(β + 1) + λsr(ΓT − β)
+

1

β + 1

]
,−1 ≤ β ≤ ΓT

(10)

and λij = 1
γij

for i ∈ {s, r}, j ∈ {r, d}.

Proof: See Appendix.
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Figure 2: Comparison for different values of γsd with γrr =
10dB, γrd = 25dB and Rate = 1 bps/Hz.

The outage probability P (γ ≤ γth) = Fγ(γth) is plotted as
a function of γsr for different values of γsd. We first observe
that the results in Lemma 1 match the Monte-Carlo simulation
results. We also observe that the outage probability decreases
with increasing strength of the source-destination link.

Using the CDF of γf obtained from Lemma 1 , the average
throughput (in nats) is

E[ln(1 + γf )] =

ˆ ∞
0

1− Fγf (t)

1 + t
dt

and can be computed using standard methods of numerical
integration.

For the case of half duplex relay (HDR), the average
throughput is computed, once again by numerical integration,
as
´∞

0
1
2 log2(1 + γ)fγh(γ)dγ, where the PDF of the end-to-

end SNR γh is [4, eqn. 6]

fγh(γ) =
(2γ + 1)K0(2Γ) + (λ1 + λ3)ΓK1(Γ)

λ1λ3
2e−

γ
λ1
− γ
λ3 ,

where Kv(.) is the v-th order modified Bessel function of the
second kind, λ1 and λ3 are the means of channels S-R and
R-D respectively, and Γ =

√
(γ2 + γ)/λ1λ3.

In Fig. 3, we show results from simulation as well as
numerical calculation of average throughput versus average
SNR γsr for both FDR and HDR.
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Figure 3: Comparison for different γsd with γrd = 10dB and
γrr = 5dB.

From Fig. 3, we see that the average throughput of FDR
increases as the average SNR of γsr increases. Also, for the
case of FDR, the average throughput increases as the average
SNR of γsd increases which indicates that the inclusion
of direct link improves the average throughput. This result
indicates that the direct link is a significant link in improving
the performance of average throughput.

IV. EQUALIZING THE RSI

In this section, we consider equalization of the RSI term
at the destination as opposed to treating it as noise. The
destination has the option of either considering or neglecting
the direct link term in the equalization. We begin with the case
when the direct link is ignored, since this has been considered
earlier in the literature [3].

A. No direct link

The direct link is neglected by setting hsd = 0 in the signal
model. Such a signal model was considered in [3], where
the final end-to-end SNR was bounded using an unbiased
minimum mean squared error decision feedback equalizer
(MMSE-DFE) at the final destination. Denoting the above
SNR as γEQ, the following bound was established in [3] for
a FDR:

γEQ ≥
γsrγrd

γsr + γrd + 2γrr + 1
. (11)

For a HDR, there is no RSI and the SNR at the destination
γh is obtained by substituting γrr = γsd = 0 in (9). So, we
get

γh =
γsrγrd

γsr + γrd + 1
. (12)

The average throughput for the FDR and HDR are compar-
atively shown in Fig. 4 for a specific set of parameters as



functions of the distance of the relay from the source with
uniform power allocation Ps = Pr = P . Also shown for
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Figure 4: Average throughput comparison for Ωr = 1, 10, d =
1, P = 20dB, x = 1

2 , α = 4, c = 1, σ2 = 1.

comparison is the average throughput for the FDR with RSI
treated as noise following the method in the previous section.
The average throughput is obtained by averaging log(1 + γ)
over numerous channel realizations.

From Fig. 4, we make the following observations. For the
FDR with RSI treated as noise, as the relay moves away from
the source, the average throughput decreases, which shows that
the source-relay channel is critical and the performance of it
depends predominantly on the S-R link. Contrary to this, when
the RSI is equalized, the average throughput is symmetrical
with respect to mid point of source and destination, which
shows that the significant effect of RSI is reduced. Apart
from this, the average throughput considering the equalized
SNR shows an improvement when compared to those of
the unequalized cases. Also as Ωr increases, the average
throughput decreases for both the equalized and unequalized
cases.

B. With direct link

We now consider the case where the direct link is included
and the RSI is equalized at the destination. It was shown in [3]
that equalizing the RSI at the destination yields better outage
probability performance than treating the RSI as noise. But the
authors have considered the analysis of outage probability in
two cases i.e. without the RSI (hrr = 0) or without the direct
link (hsd = 0). The direct link which is another reliable link in
sending the symbols from source to destination in the presence
of RSI is neglected. In this paper, we consider the case of
hrr 6= 0 and hsd 6= 0, and show that including the direct
link for the full duplex relay improves the outage probability
performance in the presence of RSI.

From the signal model, the signal and noise power spectral
densities, denoted Ss(f) and Sn(f), respectively, can be
obtained as follows:

Ss(f) = Ps|hsd|2 + Ps|hsr|2|Hn(f)|2

+2Ps<{hsdh∗srH∗n(f)},
Sn(f) = σ2(1 + |Hn(f)|2),

where <{.} denotes the real part, and

Hn(f) =

∞∑
k=1

gf
√
Prhrd(gf

√
Prhrr)

k−1 exp(−i2πfk).

(13)
Using an unbiased minimum mean squared error decision
feedback equalizer (MMSE-DFE) [8], the SNR after equal-
ization, denoted γeq is given by

γeq = exp

(ˆ 0.5

−0.5

log

[
1 +

Ss(f)

Sn(f)

]
df

)
− 1. (14)

Expressing hpq = hpqr + ihpqj , where hpqr and hpqj are the
real and imaginary parts of the channel hpq for p ∈ {s, r} and
q ∈ {r, d} and using the integral in [9, eqn. 4.224.9], we get
that

γeq =
Q1 +

√
Q2

1 −Q2
2

Q3 +
√
Q2

3 −Q2
4

− 1, (15)

where

Q3 = σ2(g2
fPr|hrd|2 + 1 + Pr|θ|2), Q4 = 2

√
Pr|θ|σ2,

Q1 = Q3 + Ps|hsd|2(1 + Pr|θ|2) + g2
fPsPr|hsr|2|hrd|2

− 2PsPrg
2
f (ahrrr − bhrrj ),

Q2 = Q4 − 2Ps
√
Pr(agf + |hsd|2|θ|), θ = gfhrr,

a = hsdr (hsrrhrdr + hsrjhrdj ) + hsdj (hsrrhrdj + hsrjhrdr ),

b = hsdj (hsrrhrdr + hsrjhrdj )− hsdr (hsrrhrdj + hsrjhrdr ).

Since
√
Q2

1 −Q2
2 ≤ Q1, γeq can be upper bounded as,

γeq ≤
2Q1

Q3 +
√
Q2

3 −Q2
4

− 1. (16)

In the expression for Q1, the term ahrrr − bhrrj has expected
value equal to 0, and a good, tractable approximation is to set
that term equal to zero. Using this approximation, we get

γeq ≈
2(Q3 + Ps|hsd|2(1 + Pr|θ|2) + g2

fPsPr|hsr|2|hrd|2)

Q3 +
√
Q2

3 +Q2
4

− 1.

Substituting the expressions for Q3, Q4 and using ρ = γrd +
γsr + 2γrr + 1, we get

γeq ≈ 2(ρ+ γsd(ρ− γrd) + γsrγrd)

ρ+
√

(ρ− 2γrr)2 + 4γrrγrd
− 1.

≤ γrr + γsrγrd + γsd(γsr + 2γrr + 1)

γrd + γsr + γrr + 1
, (17)

where in the final bound we ignore the term 4γrrγrd in the
denominator.



Using the above approximation for the equalized SNR, the
outage probability is approximately calculated as

P (γeq ≤ γth) ≈

P

(
γrr + γsrγrd + γsd(γsr + 2γrr + 1)

γrd + γsr + γrr + 1
≤ γth

)
. (18)

A technique for evaluating (18) in an integral form is provided
in Appendix B. The approximate outage probability is plotted
versus the average SNR γsr in Fig. 5. The threshold γth
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Figure 5: Outage probability for different γsd shown in brack-
ets with γrd = 25dB, γrr = 10 dB and Rop = 1 bps/Hz.

used for the calculation of outage probability is obtained using
Rop = log2(1 + γth) where Rop is the rate of transmission
for FDR. From Fig. 5, we observe that the approximation for
outage probability in (18) is a lower bound to the exact outage
probability obtained by simulating the exact γeq in (15) with
the bound being fairly close for lower γsd. Further, we observe
that including the direct link significantly improves the outage
performance by 3 dB at an outage of 10−2.

The average throughput is shown in Fig. 6 for different
transmit power P with uniform power allocation Ps = Pr =
P . The average throughput for the cases of equalized SNR
with and without direct link are obtained using (17) and (11),
respectively. The average throughput for the cases of treating
RSI as noise with direct link is obtained using (9). The average
throughput for HDR is obtained using (12).

The average throughput of both equalized and unequalized
cases for the relay with direct link shows an improvement
when compared to those without direct link. The average
throughput for the case of equalized RSI with and without
direct link outperform the average throughput of HDR for the
entire range of transmit power P , which is not the case for
treating RSI as noise. This shows the importance of equalizing
the RSI at the destination in practical FDR systems. Finally,
the curves for FDR with direct link and RSI equalized are
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almost overlapping for both Ωr = 1 dB and Ωr = 10 dB,
which effectively neutralizes the RSI.

V. CONCLUSION

In this paper, we studied a practical full-duplex AF relaying
scheme by including both the self-interference and the direct
link. The gains from equalizing the resulting ISI at the desti-
nation node were characterized by analyzing the distribution
of the end-to-end SNR. Substantial gains were seen over
comparable half-duplex relaying schemes. This shows that
residual self-interference can effectively be compensated by
suitable receiver processing at the destination helping to make
deployment of full-duplex relays practical.
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APPENDIX A
PROOF OF LEMMA 1

Proof: The CDF is given by

Fγf (ΓT ) = P (γf ≤ ΓT ) = 1− P (γf > ΓT ). (19)

Substituting from (9) for γf ,

P (γf > ΓT ) = P

(
γsd(γsr + γrr + 1) + γsrγrd
γrd(γrr + 1) + γsr + γrr + 1

> ΓT

)

= P

(
γsd > γrd

(
ΓT − γR
γR + 1

)
+ ΓT

)
(20)

= E

[
exp

(
−λsd

(
γrd

(
ΓT − γR
γR + 1

)
+ ΓT

))
I1

]
+E[1−I1],

(21)
where I1 = I

(
γrd

(
ΓT−γR
γR+1

)
+ ΓT > 0

)
and I(.) denotes an

indicator random variable. The first term in the above equation
simplifies to

λrde
(−λsdΓT )

¨

γrdβ+ΓT>0

e−γrd(βλsd+λrd)ga(β)dγrddβ, (22)

where ga(β) is the PDF of the random variable

a =
ΓT − γR
γR + 1

. (23)

Observe that −1 ≤ a ≤ ΓT , and the PDF ga(β) given in (10)
can be obtained by using the exponential distribution of γsr
and γrr.

Splitting the integration over the sub-regions β > 0 and
β < 0, the integral in (22) equals

λrde
(−λsdΓT )

(ˆ ΓT

−1

1

βλsd + λrd
ga(β)dβ

−
ˆ 0

−1

exp
(

ΓT
β (βλsd + λrd)

)
βλsd + λrd

ga(β)dβ

 . (24)

The second term above can be simplified as

E[1− I1] = Ea

[
exp

(
λrdΓT
a

)
I(a < 0)

]
(25)

which can be written as

E[1− I1] =

ˆ 0

−1

exp

(
λrdΓT
β

)
ga(β)dβ. (26)

The CDF can be obtained by substituting (24) and (26) in
(21).

APPENDIX B
EVALUATING (18)

We now express (18) in an integral form. For notational
simplicity let x1 = γsr, x2 = γrd, x3 = γsd and x4 = γrr.
Also let κ = λ1λ2λ3λ4 where λi is the inverse of the mean
of xi. Then the probability in (18) equals

κ

ˆ
XTAX+XTB−T≤0

e−ΛTXdX,

where
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and B = [−T,−T, 1, 1 − T ]T . Observe that A is a positive
definite matrix and, hence,

√
A exists. Completing the squares,

the integral can be rewritten as

P = κ

ˆ
R4

e−ΛTXIS(X)dX,

where S = (
√
AX + B̃

2 )T (
√
AX + B̃

2 ) ≤ δ2 and X =

[x1, x2, x3, x4]T . Here δ2 = T + ‖B̃‖2
4 and B̃ =

√
A
−1
B.

From [10], the above expression equals

P = κ

ˆ
R4

Real{ê−ΛTX(ω)ÎS(X)(ω)}dω, (27)

where f̂(x)(ω) represents the Fourier transform of the function
f(x) . We just use the real part, since the final probability is a
real number (the imaginary part of the integral can be shown
to be 0). The Fourier transform of the first term is

ê−ΛTX(ω) =

4∏
m=1

1

jωi + λi
.

The Fourier transform of the second term is

ÎS(X)(ω) =

ˆ
(
√
AX+ B̃

2 )T (
√
AX+ B̃

2 )≤δ2

e−j<w,x>dx.

Using the substitution X = A−1/2(δY − B̃
2 ), ÎS(X)(ω) equals

δ2 det(A−1/2)ej<ω,A
−1/2 B̃

2 >

ˆ
Y TY≤1

e−j<A
−1/2δω,Y >dy.

Using the Fourier transform of the indicator of the unit ball
in 4 dimensions, we have

ÎS(X)(ω) =

δ2 det(A−1/2)ej<ω,A
−1/2 B̃

2 >‖A−1/2δω‖2J2(‖A−1/2δω‖),

where J2(x) is the Bessel function. Using the above expression
in (27), results in an integral expression for (18).


