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Abstract—In this paper we consider a multi-user spatial multi-
plexing (SM) cellular network, where Nt streams are transmitted
to Nt users in the cell. Specifically, we obtain the coverage
and rate expressions for a system employing zero-forcing (ZF)
receiver. Compared to single stream transmission (SST), it is
interesting to see that SM degrades the rate for a notable
percentage of users. For the case of two and four receiver
antennas, the increase in mean rate of SM is modest compared
to single stream transmission (SST) while SST provides a gain
over SM for cell edge users.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) communications
are now an integral part of current cellular standards. MIMO is
a mature technology and there is an extensive body of literature
for various MIMO techniques [1], [2]. In this paper, we
consider open-loop multi-user spatial multiplexing technique
for cellular downlink. We analyse the coverage and average
ergodic rate with a linear zero-forcing receiver in the presence
of interference from other cells.

Spatial multiplexing has been extensively studied in the
presence of additive Gaussian noise [3], [4], [5]. Fewer results
exist that characterize the performance of SM with external in-
terference [6]. However, interference is a performance limiting
factor in current cellular networks, and hence it is important
to study the performance of SM in the presence of co-channel
interference. In this paper, we model the locations of the base
stations (BSs) by a spatial Poisson point process (PPP) and
consider distance dependent inter-cell interference. The PPP
model was used for base station location modelling in [7] to
analyse the coverage in cellular networks with one antenna.

PPP model was also used in [8], [9] and [10] to analyse
spatial multiplexing with ZF in MIMO ad hoc networks.
In ad hoc networks, an interferer can be arbitrarily close
(much closer than the intended transmitter) to the receiver
in consideration. This results in interference that is heavy-
tailed. On the other hand, in a cellular network the user usually
connects to the closest BS and hence the distance to the nearest
interferer is greater than the distance to the serving BS. This
leads to a more tamed interference distribution compared to
ad hoc networks. Because of this the insights obtained in this
paper differ from [8], [9], [10].

In this paper, we extend the framework in [7] to a cellular
MIMO network. We derive general expressions for coverage

probability, and ergodic rate in a cellular downlink with SM
and a ZF receiver. We observe that single-stream transmis-
sion provides a higher rate compared to SM with increasing
transmit antenna for cell edge users.

II. SYSTEM MODEL

We model the locations of the base stations (BSs) by
a spatial Poisson point process [11] Φ of density λ. The
merits and demerits of this model for BS locations have
been extensively discussed in [7]. We assume a nearest BS
connectivity model, where in a mobile tries to establish a
connection with its closest BS. This results in a Voronoi
tessellation of the plane corresponding to the BS locations,
where the service area of a BS is the Voronoi cell associated
with it.

We assume that the BSs are equipped with Nt antenna and
the users (UE) are equipped with Nr antenna. In this paper
we focus on downlink and hence the Nt at the BSs are used
for transmission and the Nr antenna at the UE are used for
reception. For convenience, we assume Nr = nNt with n ≥ 1.
We assume that all the BSs transmit with equal power which
for convenience we set to unity. Hence each transmit antenna
uses a power of 1/Nt.

We assume the standard pathloss model `(x) = ‖x‖−α,
α > 2. Independent Rayleigh fading with unit mean is as-
sumed between any pair of antenna. We focus on the downlink
performance and hence without loss of generality, we consider
and analyse the performance of a typical mobile user located at
the origin. The Nr×1 fading vector between the q-th antenna
of the BS x ∈ Φ and the typical mobile at the origin is denoted
by hx,q . We assume hx,q ∼ CN (0Nr×1, INr ).

We consider the case where each BS uses its Nt antenna
to serve independent data streams to Nt users in its cell1. Let
ô ∈ Φ denote the BS that is closest to the mobile user at the
origin. We assume that the UE at the origin is interested in
decoding the k-th stream transmitted by its associated BS ô.
Focusing on the k-th stream transmitted by ô, the received

1We make the assumption that every cell has at least Nt users. This is true
with high probability when there are large number of users which is normally
the case.



Nr × 1 signal vector at the typical mobile user is

yk =
aô,k√
rα

hô,k +
1√
rα

Nt∑
q=1,q 6=k

hô,qaô,q + I(Φ) + w, (1)

where

I(Φ) =
∑
x∈Φ\ô

1√
‖x‖α

Nt∑
q=1

hx,qax,q,

denotes the interference from other BSs. The symbol trans-
mitted from the the q-th antenna of the base station x ∈ Φ is
denoted by ax,q and E[|ax,q|2] = 1/Nt. The additive white
Gaussian noise is given by w ∼ CN (0Nr×1, σ

2INr ). The
distance between the typical mobile user at the origin and
its associated (closest) BS is denoted by r = ‖ô‖. Observe
that r is a random variable since the BS locations are random.

We now compute the post-processing SINR with a zero-
forcing receiver. Each UE has Nr = nNt, n ≥ 1 receive
antenna. Hence the receive antenna can be used to cancel the
self-interference caused by the Nt−1 streams and n−1 other
interfering BSs. Technically, some of the (n − 1)Nt receive
antenna can be used for diversity enhancement. However, in
this paper we assume the (n−1)Nt receive antenna are entirely
used to cancel interference from other users. This requires the
receiver to have some capability to estimate the channel of the
closest n− 1 interferers.

The receive filter v for the typical user at the origin is
chosen orthogonal to the channel vectors of the transmitters
that need to be cancelled out. We assume that the n − 1
interferers closest to the UE are cancelled. Since the typical
UE is interested in the stream k, v is chosen as a unit norm
vector orthogonal to the following vectors:

hô,q : q = 1, 2, .., k − 1, k + 1, .., Nt,

hx,q : x ∈ {x1, x2, ..., xn−1}, q = 1, 2, .., Nt,

where {x1, x2, ..., xn−1} are the (n − 1) BSs closest to the
typical UE in consideration excluding ô. Hence at the receiver,

v†yk =
aô,k√
rα

v†hô,k +

Nt∑
q=1,q 6=k

aô,q√
rα

v†hô,q + v†I(Φ) + v†w.

Since v† is designed to null the closest n − 1 interferers,
v†I(Φ) = v†I(Φ̂) where Φ̂ = Φ \ {x1, ..., xn−1}. So we have

ỹk =
aô,k√
rα

v†hô,k + v†I(Φ̂) + v†w.

Let S
4
= |v†hô,k|2 and Hx,q

4
= |v†hx,q|2. It can be shown that

S and Hx,q are i.i.d. exponential random variables. Hence the
post processing zero-forcing signal-to-interference-noise ratio
(SINR) is

SINR =
Sr−α

Ntσ2 +
∑
x∈Φ̂

‖x‖−α
Nt∑
q=1

Hx,q︸ ︷︷ ︸
Î(Φ̂)

. (2)

III. COVERAGE

In this section, we analyze the coverage using the ZF
receiver described above. A mobile user is said to be in
coverage if the received SINR is greater than the threshold
needed to establish the connection. The probability of coverage
is denoted by Pc(T, α) and is given by

Pc(T, α)
4
= P[SINR > T ]. (3)

From the above expression we see that coverage probability
is the CCDF of the SINR. The ZF receiver is designed such
that it can cancel interference from (n−1) BSs apart from the
same cell interference. So we first compute the distribution of
distance between the typical user and the (n− 1)th BS which
will be used in the analysis later.

A. Distance to the serving BS and (n− 1)-th BS.
Recall that r denotes the distance to the serving (nearest)

BS. We have

Fr(r0) = P[r > r0] = P[B(o, r0) is empty ],

= e−λπr
2
0 ,

where B(o, r) represents a ball of radius r around the origin.
Hence the nearest neighbour PDF is

fr(r) = e−λπr
2

2πλr. (4)

We now compute the distance to the (n − 1)-th closest BS
conditioned on the distance to the nearest BS r. Let R denote
the distance to the n − 1-th BS. Hence the event R ≤ R0

equals the event that there are at least n − 1 base stations in
the region between two concentric circles of radius r and R
centred at origin. Hence

FR|r(R0 | r0) = P [R ≤ R0|r = r0]

=

∞∑
k=n−1

e−πλ(R2
0−r

2
0) [λπ(R2

0 − r2
0)]k

k!
, R0 > r0.

Hence the conditional PDF is

fR|r(R|r) =
d

dR
FR|r(R|r)

=
2πλR

(n− 2)!
e−πλ(R2−r2)

(
πλ(R2 − r2)

)n−2
.

B. Coverage Probability
We first provide the main result which deals with the

coverage probability for a general Nt, n > 1 and α.

Theorem 1. The probability of coverage with ZF receiver is
given by

Pc(T, α) =

∫ ∞
0

∫ ∞
r

e−TNtσ
2rαLIR(Trα)fR|r(R|r)fr(r)dRdr,

where LIR(s) the conditional Laplace transform of the inter-
ference and is given in (5).

Proof: The proof closely follows the main Theorem in
[7]. We only highlight the steps that differ significantly. We
have

Pc(T, α) =

∫ ∞
0

∫ ∞
r

e−TNtσ
2rαLR(Trα)fR|r(R|r)fr(r)dRdr,



where LIR is the Laplace transform of the interference con-
ditioned on R.

LIR(s) =E
[
e−sÎ(Φ̂)

]
= E exp

−s∑
x∈Φ̂

‖x‖−α
Nt∑
q=1

Hx,q

 .

Since Hx,q are i.i.d exponential, their sum
∑Nt
q=1Hx,q is

gamma distributed. Using the Laplace transform of the gamma
distribution,

LIR(s)

=E
∏
x∈Φ̂

E exp

(
−s‖x‖−α

Nt∑
q=1

Hx,q

)
,

=E
∏
x∈Φ̂

1

(1 + s‖x‖−α)Nt
,

(a)
= exp

(
−λ2π

∫ ∞
R

(
1− 1

(1 + sx−α)Nt

)
xdx

)
,

= exp

(
−λπR2

(
2F1

(
Nt,−

2

α
;
α− 2

α
;−R−αs

)
− 1

))
.

(5)

where (a) follows from the probability generating functional
(PGFL) of the PPP [11]. 2F1(a, b, c, z) is the standard hyper-
geometric function2.

C. Special case: Interference limited σ2 = 0.

In this section we focus on the coverage probability for
particular values of n, Nt and α in the absence of noise. We
begin with the n = 1 case.

1) Case n = 1: When n = 1, Nt = Nr and hence only the
self interference can be cancelled. In this case R = r and the
integration with respect to R will not be necessary. We have

LR(Trα) = e−λπr
2( 2F1(Nt,− 2

α ;α−2
α ;−T)−1).

Substituting for fr(r), the coverage probability reduces to

Pc(T, α) =

∫ ∞
0

e−λπr
2( 2F1(Nt,− 2

α ;α−2
α ;−T))2πrλdr,

= 2F1

(
Nt,−

2

α
;
α− 2

α
;−T

)−1

.

The coverage probability can be further simplified when α = 4
and the coverage results are provided in Table I. When noise
is neglected, we observe that the coverage probability does
not depend on the density of BSs. The coverage probability
is plotted3. for different Nt in Figure 1 as a function of the
SINR threshold T .

2
2F1(a, b, c, z) =

Γ(c)
Γ(b)Γ(c−b)

∫ 1
0

tb−1(1−t)c−b−1

(1−tz)a
dt.

3Figure 1 and Figure 2 were generated in about 5 seconds each in
Mathematica on a standard Dell desktop. This is a very short time compared
to the time taken if the curves were to be obtained by Monte-Carlo simulation
of the entire system.

Nt Coverage probabilityPc(T, 4)

2 2
(

T
T+1

+ 3
√
T tan−1

(√
T
))−1

3 4
(

T (7T+9)

(T+1)2
+ 15

√
T tan−1

(√
T
))−1

4 2
(

T (T (57T+136)+87)

24(T+1)3
+ 35

8

√
T tan−1

(√
T
))−1

TABLE I: Coverage probability for α = 4 and σ2 = 0 for
different Nt. Since n = 1, we have Nr = Nt.
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Fig. 1: Coverage probability versus T for 1× 1, 2× 2, 3× 3,
4× 4 antenna configurations with σ2 = 0 and α = 4.

2) Case n ≥ 2: Here Nr = nNt, so the interference from
n − 1 BSs can be cancelled. Setting σ2 = 0 and substituting
for fr(r) and fR|r(R|r) in Theorem 1, the coverage is

Pc(T, α) =

∫ ∞
0

∫ ∞
r

e−λπR
2( 2F1(Nt,− 2

α ;α−2
α ;−T rα

Rα ))

· 4(πλ)n

(n− 2)!
(R2 − r2)n−2RrdRdr.

Using the transformation R/r → β and r → t (which implies
β > 1), using the Jacobian for change of variables we obtain

Pc(T, α) =
4(πλ)n

(n− 2)!

∫ ∞
0

∫ ∞
1

e−λπt
2β2( 2F1(Nt,− 2

α ;α−2
α ;−Tβ−α))

· t2n−1β(β2 − 1)n−2dβdt.

Exchanging the integrals and integrating with respect to t, the
probability of coverage is

Pc(T, α) =

∫ ∞
1

2(n− 1)β1−2n(β2 − 1)n−2

2F1

(
Nt,− 2

α ; α−2
α ;−Tβ−α

)n dβ. (6)

We see that the coverage probability can be evaluated using a
single integral. Let β = R/r denote the ratio of the distance
of the n − 1 th closest BS of the typical UE to the distance
of its closest BS. It can be shown that the PDF of the random
variable β is

gβ(β) = 2(n− 1)β1−2n(β2 − 1)n−2, β > 1.

Hence from (6), the coverage probability for n > 1 also equals

Pc(T, α) = Eβ

[
2F1

(
Nt,−

2

α
;
α− 2

α
;−Tβ−α

)−n]
. (7)



The ratio of the distance to the serving BS plays to the closest
interferer plays a crucial role in determining the coverage. The
average value of β is given by

E[β] =

√
πΓ(n)

Γ(n− 1/2)
≈
√

(n− 1)π.

In Figure 2, the coverage probability given by (6) is plotted
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Fig. 2: Coverage probability versus T for 1× 2, 1× 4, 2× 4,
2 × 8, 3 × 6, 3 × 9 antenna configurations with σ2 = 0 and
α = 4.

for various antenna configurations. While a single interferer is
cancelled in 1×2, 2×4, 3×6 configurations, we observe that
1× 2 has the best performance followed by 2× 4 and 3× 6.
This is because of the increased aggregate interference across
the antenna as Nr increases. We also observe that cancelling
more interferers increases the coverage. Also we can see that
2 × 8 has a similar performance to 1 × 2, even though three
interferers are cancelled in 2×8 compared to a single interferer
in 1× 2. Similar observation can be made for 2× 4 and 3× 9
configurations.

IV. AVERAGE ERGODIC RATE

In this section, we compute the ergodic data rate achievable
over a cell for a given user and the rate CDF, assuming Nt
users are served by the BS in a cell. For computing the rate,
we consider the interference as noise. We also assume that the
modulation and coding is chosen so that they achieve Shannon
bound log2(1 + SINR), by treating residual interference as
noise.

A. Average Achievable Rate per user
We begin by the theorem to find the ergodic capacity of

typical mobile user and also consider some special cases of
importance.

Theorem 2. The average ergodic rate of a typical mobile user
and its associated BS in the downlink, in bits/sec/Hz, is given
by

C(λ, α,Nt, n)
4
=E [log2(1 + SINR)]

=

∫ ∞
0

Pc(2
t − 1, α)dt. (8)

Proof: The proof follows from the CDF of the positive
random variable log2(1 + SINR).

We now will discuss some special cases of determining
average achievable rate as in coverage analysis. When n = 1
and σ2 = 0, the averge rate is

C(λ, α,Nt, 1) =

∫ ∞
0

2F1

(
Nt,−

2

α
;
α− 2

α
; 1− 2t

)−1

dt,

which can be simplified when α = 4. For n > 1, the average
rate with σ2 = 0 is

C(λ, α,Nt, n)

=

∫ ∞
0

∫ ∞
1

2(n− 1)β1−2n(β2 − 1)n−2

2F1

(
Nt,− 2

α ; α−2
α ; (1− 2t)β−α

)n dβdt.

B. Comparison with single stream transmission
In our system model, we considered a multi-user spatial

multiplexing where Nt streams are transmitted to the Nt users
in the cell. In this sub-section we want to compare this with
a single-stream transmission (SST). In SST, the BS has only
one antenna i.e., Nt = 1. Hence it can serve only one stream
and hence one user. So all the users are served by dividing
the resources either in time (TDMA) or frequency (FDMA).
Hence in this case, each user has 1/Nt time or frequency slice.

Total rate with SM: In SM each user decodes a single stream
and hence achieves an ergodic rate C(λ, α,Nt, n), Nt > 1.
Hence for Nt users, the rate CDF is given by

FSM (c) = P(Nt log2(1 + SINR(Nt, n)) ≤ c), (9)

where SINR(Nt, n) denotes the SINR with Nt transmit and
nNt receive antenna. The above distribution can be easily
computed from the SINR CCDF in Theorem 1. It is easy to
see that the total average downlink rate is given by

CSM = NtC(λ, α,Nt, n).

Total rate with SST: In SST, since the resources have to
be divided among the users, each user achieves an average
rate N−1

t C(λ, α, 1, n). Hence for Nt users the average total
downlink rate achieved is

CSST = C(λ, α, 1, n).

The rate CDF is given by

FSST (c) = P(log2(1 + SINR(1, n)) ≤ c),

where SINR(Nt, n) denoted the SINR with 1 transmit and n
receive antenna. The above distribution can be easily computed
from the SINR CCDF in Theorem 1.

The average ergodic rates achievable for various config-
urations is shown in the Table II. We make the following
observations.

1) C(λ, α,Nt, n) increases as a function of Nt. So adding
more transmit antennas at BSs improves the mean rate,
but the rate profile obtained from the rate CDF gives us
more insight.

2) The mean rate for 1× 4 is 2.78 while it is 4.3 for 2× 4
and 4.6 for 4×4. Hence the returns are diminishing with



Two users the cell

Nt ×Nr SM/SST Mean 5% 50% 80%
1× 2 SST 2.79 0.113 1.82 4.59
2× 2 SM 3.16 0.076 1.42 4.93

Four users in the cell

Nt ×Nr SM/SST Mean 5% 50% 80%
1× 4 SST 3.5 0.187 2.61 5.72
2× 4 SM 4.31 0.115 2.23 7.30
4× 4 SM 4.6 0.076 1.55 6.57

Six users in the cell

Nt ×Nr SM/SST Mean
1× 6 SST 3.9
2× 6 SM 5.05
3× 6 SM 5.51
6× 6 SM 5.74

TABLE II: Rate profile for various configurations. The rates
are in bits/sec/Hz and are computed for σ2 = 0 and α = 4.
For a general Nt×nNt system with k users, the average sum
rate for comparison is Nt

k C(λ, α,Nt, n)k = NtC(λ, α,Nt, n).
This follows from the fact that the users are divided into k/Nt
group and resources are divided between them. Each group is
served using SM of Nt streams.
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Fig. 3: Rate CDF of 1 × 2 and 2 × 2 with λ = 1, α = 4and
σ2 = 0.

increasing Nt. Similar observation can be made for the
k × 6 for k = 1, 2, 3, 6.

3) Increasing Nt and hence increasing the number of
streams in SM degrades the network performance. It
can be seen that the 5 percentile rate of the network
is better for 1× 2 and the 1× 4 cases. The same is true
for the case of 50 percentile point too. In both cases
as Nt is increasing, the rate is highly reduced. But for
80 percentile Nt = 2 and 4 are better, but the rates are
comparable. This implies increasing Nt and using the
multiple transmit antenna for transmitting more streams
will hurt the cell edge users.

In Figures 3 and 4, the CDFs of the rate are plotted for
various configurations. The rate profile tells that increasing
Nt not only provide lesser increase in mean rate but also
degrades the performance of the network. From the rate CDF
it is interesting to see that SM with ZF receivers degrades the
rate for more than 60 percentage of in the presence of other
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cell interference. This might be because of using ZF which
is a suboptimal receiver. It will be interesting to analyse the
performance with MMSE receiver.
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