EE5121: Optimization Methods

HW #2: Topology

1 Sequences

Exercise 1. Formally prove the following limits.

- 1. $\lim_{n \to \infty} \frac{1}{1+n} = 0.$
- 2. $\lim_{n \to \infty} (-1)^n \exp(-n) = 0.$

Exercise 2. Prove true or false: (provide a counter example if false and a proof if true)

- 1. Does $x_n < y_n$ for all $n \ge 1$ imply $\lim_{n \to \infty} x_n < \lim_{n \to \infty} y_n$?
- 2. Does $x_n < y_n$ for all $n \ge 1$ imply $\lim_{n \to \infty} x_n \le \lim_{n \to \infty} y_n$?

Exercise 3. Prove that a monotone increasing and bounded sequence converges to its sup, i.e., if $\{x_n\}$ is an increasing sequence,

$$x_n \to \sup(\{x_n\})$$

Exercise 4. In this problem, we will review two important numbers related to sequences lim inf and lim sup which are defined as follows.

$$\liminf x_n = \sup \{ \inf \{ x_m : m > n \} : n > 0 \},\$$

$$\limsup x_n = \inf \{ \sup \{ x_m : m > n \} : n > 0 \}.$$

Let's first consider an example of an increasing sequence $x_n = 1/n, n > 1$.

$$\liminf x_n = \sup\{\inf\{\frac{1}{m}: \ m > n\}: n > 0\}.$$

Since 1/m is a decreasing sequence,

$$\inf\{\frac{1}{m}: \ m > n\} = \inf\{\frac{1}{n+1}, \frac{1}{n+2}, \frac{1}{n+3} \dots\} = 0.$$

Hence $\liminf x_n = \sup\{0, 0, 0, \dots\} = 0$. We will now compute \limsup

$$\limsup x_n = \inf\{\sup\{\frac{1}{m}: m > n\}: n > 0\}$$
$$= \inf\{\sup\{\frac{1}{n+1}, \frac{1}{n+2}, \frac{1}{n+3}\dots\}: n > 0\}$$
$$= \inf\{\frac{1}{n+1}: n > 0\} = 0.$$

Observe that \liminf and \limsup always exist (if we consider extended real numbers $\mathbb{R} \cup \{\infty, -\infty\}$), even when the limit does not exist.

1. Let $x_n = (-1)^n$: Find its lim sup and lim inf.

#2: Topology-1

- 2. Let $x_n = 1$
- 3. Prove that for any sequence $\{x_n\}$, $\liminf x_n \leq \limsup x_n$.
- 4. If $\liminf = \limsup \text{ show that the limit exists and}$

 $\lim x_n = \liminf x_n = \limsup x_n.$

Hint: Observe that

 $\inf(x_n, x_{n+1}, x_{n+2}, \dots) \le x_n \le \sup(x_n, x_{n+1}, x_{n+2}, \dots)$

and the fact that a monotonic (increasing or decreasing) and bounded sequence converges.

2 Open sets

Exercise 5. Prove that the intersection of two open sets is open. Also prove that the union of two open sets is open.

Exercise 6. This problem emphasizes the fact that the notion of a set being open (or closed) depends on the ambient space in consideration. As a subset of \mathbb{R} check if (0,1) is an open set. Is (0,1) an open set of \mathbb{R}^2 ? (Use the definition of open set)?

Exercise 7. Let $A = (0, 10) \setminus \{1, 2, 3, 4, 5\}$. Is the set A an open subset of \mathbb{R} ?

Exercise 8. Let A be a $n \times n$ invertible matrix and $b \in \mathbb{R}^n$ belong to the range space of A. Show that the set

$$\{x : x \in \mathbb{R}^n, Ax < b\},\$$

is an open subset of \mathbb{R}^n . What happens if A is not invertible?

Exercise 9. Observe that the definition of an open set depends on the notion of a Ball which in turn depends on the norm used. Suppose $A \subset \mathbb{R}^d$ is an open set with respect to the norm $\|.\|_2$ (the standard Euclidean norm). Is the set A an open set in \mathbb{R}^d , when we use a different norm, for example the $\|.\|_1$ norm? Hint: Use the equivalence of norms in \mathbb{R}^d and the definition of open sets.

Exercise 10. Prove that a set S is open if and only if all of its elements are inter points, i.e. $S = S^{o}$.

Exercise 11. What is the interior of the set $x^2 + y^2 \leq 1$ as a subset of \mathbb{R}^3 (with respect to the metric on \mathbb{R}^3). What is its interior as a subset of \mathbb{R}^2 (with respect to the metric on \mathbb{R}^2).

3 Closed sets

Exercise 12. Check if the following sets are closed subsets of \mathbb{R}^2

$$A_1 = \{(x, y) : x > 0, y > 0, 3x + 2y \le 1\}.$$

$$A_2 = \{(x, y) : x > 0, y > 0, 3x + 2y > 1\}.$$

$$A_4 = \{(x, y) : 0 < x < \pi, \sin(x) \le 1/2\}.$$

please provide reasons.

#2: Topology-2

Exercise 13. Prove that the intersection of two closed sets is closed. Also prove that the union of two closed sets is closed. (Hint: look at their complements and use Exercise 5)

Exercise 14. Prove that the supremum and the infimum of a closed set $S \subset \mathbb{R}$ belong to the set. (Hint: Prove by contradiction)

4 Continuous functions

Exercise 15. Let f(x) and g(x) be two continuous functions from \mathbb{R}^d to R. Also $g(x) \neq 0$. Show that

- 1. f(x) + g(x) is a continuous function.
- 2. $\frac{f(x)}{g(x)}$ is a continuous function.
- 3. Is $\max\{f(x), g(x)\}\ a\ continuous\ function?$

Exercise 16. In the class we have proved that if a function is continuous, then the inverse image of an open set is open. Now prove the converse: Is the inverse image of any open set is open, then the function is continuous.

5 Compact sets

Exercise 17. Are the following sets compact: provide some arguments

- 1. $A_1 = [5, 10] \cup \{0\}$
- 2. $A_2 = \{0, 1/2, 1/3, 1/4, /1/5, ...\}$ as a subset of \mathbb{R}

3.
$$A_3 = \{x; x \in \mathbb{R}^d, \|x\|_{\alpha} \le 1\}$$

4. $A_4 = \{x; x \in \mathbb{R}^d, Ax \ge b\}, A \text{ is invertible } d \times d \text{ matrix and } b \neq 0$

- 5. $A_5 = A_4 \cap B(0, 10)$
- 6. $A_6 = (0, 1)$ as a subset of \mathbb{R}^2 .
- 7. $A_7 = \mathbb{R}$. Try to prove or disprove using the sequential definition of compactness.
- 8. $A_8 = \{x \in \mathbb{R}^{d+1} : x_1 + x_2 + \dots + x_{d+1} = 1, x_i \ge 0\}$, the d-dimensional simplex.

Exercise 18. Prove that the union of two compact sets is compact. Similarly prove the intersection.

Exercise 19. In the class we have proved that every bounded and closed subset of \mathbb{R}^d is compact. Now prove the converse: Every compact subset of \mathbb{R}^d is closed and bounded.