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Super-Resolution of Face Images
Using Kernel PCA-Based Prior
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Abstract—We present a learning-based method to super-resolve face im-
ages using a kernel principal component analysis-based prior model. A
prior probability is formulated based on the energy lying outside the span
of principal components identified in a higher-dimensional feature space.
This is used to regularize the reconstruction of the high-resolution image.
We demonstrate with experiments that including higher-order correlations
results in significant improvements.

Index Terms—Face, higher-order statistics, kernel PCA, principal com-
ponent analysis (PCA), super-resolution.

I. INTRODUCTION
Super-resolution is becoming increasingly important for many

multimedia applications [1]. It refers to the process of reconstructing
a high-resolution image from low-resolution frames. Most methods
[2]–[6] assume knowledge of the geometric warp of each observation
and the nature of the blur. However, the effectiveness of such recon-
struction-based super-resolution algorithms, that do not incorporate
any specific prior information about the image being super-resolved,
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has been shown to be inherently limited [7], [8]. A learning-based
method has been suggested in [7] to super-resolve face images. It
uses a prior based on the error between the gradient values of the
corresponding high-resolution pixel in the training image and in the
estimated image. But this renders it sensitive to image alignment,
scale, and noise. Gunturk et al. [9] perform super-resolution in the
eigenface space. Since their goal is face recognition, they reconstruct
only the weights along the principal components instead of attempting
to produce a high-resolution estimate that is visually superior. In [10],
a method is presented which super-resolves faces by first finding the
best fit to the observations in the eigenface domain. A patch-based
Markov network is then used to add residual high-frequency content.
Some more learning-based approaches are discussed in [11]–[13].

In this paper, we introduce a learning-based method for super-res-
olution of faces that uses kernel principal component analysis (PCA)
for deriving prior knowledge about the face class. Kernel PCA is a non-
linear extension of traditional PCA for capturing higher-order correla-
tions in a data set. Using kernel PCA, we extract valuable prior infor-
mation in a computationally efficient manner and show how it can be
used within a maximum a posteriori (MAP) framework along with the
observation model for improving the quality of the super-resolved face
image. Experimental results on still images and real video sequences
are given to demonstrate the effectiveness of using higher-order statis-
tics for super-resolution. The proposed method outperforms traditional
reconstruction-based algorithms and is more robust to errors in mo-
tion and blur parameters. We also show comparisons with the learning-
based method described in [7] and demonstrate improved performance
when the magnification is high.

It may be mentioned that in [14], an application of the Hebbian al-
gorithm is described where kernel PCA is used for image zooming by
projecting an interpolated version of the low-resolution image on to the
high-resolution principal subspace. The method is, however, limited to
using a single image and does not incorporate any knowledge of the
imaging process.

The remainder of the paper is organized as follows: In Section II,
we discuss PCA-based super-resolution within the MAP framework.
Construction of a prior based on kernel PCA is discussed in Section III.
Experimental results are given in Section IV while Section V concludes
the paper.

II. MAP FRAMEWORK

Each low-resolution image is obtained by applying a geometric
warp, blurring and down-sampling to the original high-resolution
image, followed by addition of noise. Since all of these are linear
operations, for each of the r low-resolution images, we have in
matrix-vector form

Yi = DBiGiX +Ni; i = 1; 2; . . . ; r (1)

where X is the high-resolution image, Yi is the ith low-resolution
image, Ni is the noise in the ith observation, D is the decimation ma-
trix, whileBi andGi are the blur and geometric warp matrices, respec-
tively, for the ith observation. Combining the equations in (1), we can
write

Y = HX + Z (2)

where Y = [Y1 . . . Yr ] , H = [(DB1G1) . . . (DBrGr) ] and

Z = [N1 . . .Nr ] . Assuming that Z is white Gaussian with variance
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�2Z , the expression for the MAP estimate X̂ of X can be derived using
Bayes’ rule as

X̂ = argmin
X

kY �HXk2
2�2Z

� logP (X) : (3)

Markov Random Fields (MRFs) have been used to derive the prior term
P (X) [4], [5]. Such models are based on smoothness constraints and
have to compromise between blurring out edges and letting in noise. We
develop an image model that uses the prior knowledge that the image
to be super-resolved belongs to the face class.

A. Super-Resolution Using Linear PCA

Given an N -dimensional zero-mean random vector X , PCA finds
orthonormal matrix P such that

Cov(P X) =E[P XX P ]

=P Cov(X)P

=diag ([�1; . . . ; �N ]) ; �1 > . . . > �N : (4)

The column vectors fVig of P are the eigen-vectors of Cov(X),
with the eigen-values f�ig giving the corresponding variance. In
our problem, X is a random super-resolved (zero-mean) face image,
arranged lexicographically as an N � 1 vector. The covariance
matrix of the data set is calculated empirically from a set of training
vectors (high-resolution face images) fTigi=1...M as Cov(X) =

(1=M) M

i=1
TiTi = AA where A = (1=

p
M)[T1T2 . . .TM ] is

an N � M matrix. Since the eigen-vectors fVig lie in the span of
fTig, it is sufficient to compute the eigen-vectors of A A (which is
an M �M matrix, M � N ). The eigen-vectors feig of A A can be
related to fVig as Vi = Aei where �iei ei = 1. The first m principal
eigen-vectors are chosen such that they account for more than 90% of
the total variance.

Since the image to be super-resolved is a face, we expect most of its
energy to lie within the subspace spanned by the principal components
and very little energy outside of it. We use a Gibb’s prior to derive the
term P (X) in (3) as

P (X) =
1

C
exp �1

�
U(X) (5)

where U(X) is the energy of X outside the principal subspace, and C
and � are normalization constants. The energy along the principal com-
ponents is considered legitimate facial variation and is not penalized.

We define the projection of X on the principal subspace as 	X =
m

i=1
(X Vi)Vi. Due to the orthogonality of Vi’s, we have

U(X) = kXk2 �
m

i=1

(X Vi)
2

= k	X �Xk2: (6)

Consequently, U(X) is the square of the distance betweenX and 	X .
Therefore,

P (X) =
1

C
exp �k	X �Xk2

�
(7)

Note that P (X) increases as X converges to 	X . Combining (3) and
(7), we obtain

X̂ = argmin
X

kY �HXk2
2�2Z

+
k	X �Xk2

�

= argmin
X

kY �HXk2 + �Zk	X �Xk2 (8)

Fig. 1. Shaded portion indicates the image of< in< . If we try to minimize
the distance of ~�(X) from the face space starting from A, the estimate will
move from A to B but then drift to C.

where �Z / �2Z . Equation (8) yields a regularized solution that can be
computed by gradient-descent.

III. KERNEL PCA-BASED PRIOR

In the previous section, we developed a prior image model for the
super-resolution problem using linear PCA, but this is limited to cap-
turing second-order correlations. We now extend PCA to take higher-
order correlations among the face pixels into account for achieving
better super-resolution capability.

Based on the ideas in [15], [16], we define a nonlinear function �
on the image space <N as � : <N ! <F where typically F �
N . We call <F the feature space. The function � is usually chosen
such that <F contains higher-order product terms from <N . Carrying
out PCA on <F will then capture higher-order correlations from <N .
However, explicitly calculating the nonlinear map� is computationally
expensive, especially when the space is high-dimensional. We define a
kernel function k such that k(x; y) = �(x) �(y). Given vectors in
the image space, the kernel function calculates their dot product in the
feature space. We can choose k appropriately to induce a desired �.

Since we need to carry out PCA in<F , the map of our data set (face
images) in <F needs to be mean-adjusted. We modify � and k to get
~� and ~k in the following manner:

~�(x) =�(x)� 1

M

M

i=1

�(Ti) (9)

~k(x; y) = ~�(x) ~�(y)

= k(x; y)� 1

M

M

i=1

k(x; Ti)� 1

M

M

i=1

k(Ti; y)

+
1

M2

M

i=1

M

j=1

k(Ti; Tj): (10)

We need to first compute A A where A =
(1=
p
M)[~�(T1) . . . ~�(TM)]. Each element of A A is

given by

(A A)i;j =
1

M
~�(Ti) ~�(Tj) =

1

M
~k(Ti; Tj): (11)
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TABLE I
ALGORITHMS FOR TRAINING AND SUPER-RESOLUTION

Next, we eigen-decomposeA A to get the eigen-values f�ig, and nor-
malized eigen-vectors feig. Based on the values of f�ig, we choose the
firstm eigen-vectors as the principal components. We do not explicitly
calculate fVig since finding A is computationally prohibitive. Given a
new image z, we calculate the projection of ~�(z) on eigen-vector Vi as

~�(z) Vi = ~�(z) Aei =

M

j=1

ei ~k(z; Tj): (12)

To build an appropriate prior image model, we choose k as

k(x; y) = (1 + x y)
n

(13)

This choice of k induces a mapping � that will contain all product
terms of order 0 to n. Thus, the corresponding prior would incorporate
all correlations from order 0 to 2n.

It may be noted that unlike in the linear PCA case, using U(X) as
defined in (6) may not yield good estimates. This is because the esti-
mate ~�(X) is constrained to move only in the volume ~�(<N), which
will not be at a uniform distance from the face space. Thus, maximizing
a prior having the same form as in (7) can cause the estimate to move
away from its own projection as illustrated in Fig. 1. We derive P (X)
using a modified formulation for the energy U(X), which uses the dis-
tance ofX from the projection of an initial estimate ~�(X0), rather than
from that of ~�(X) itself. The initial estimate will act as an anchor and
prevent the estimate from drifting away. The projection 	X is given
by

	X =

m

i=1

~�(X0) Vi Vi: (14)

Modifying (7) and (8) appropriately, we get P (X) =
(1=C) expf�(k	X � ~�(X)k2=�)g. Hence,

X̂ = argmin
X

kY �HXk2 + �Z 	X � ~�(X)
2

: (15)

In the above equation

	X � ~�(X)
2

=

m

i=1

~�(X0) Vi
2

+ ~k(X;X)

�2

m

i=1

~�(X0) Vi ~�(X) Vi : (16)

The terms ~�(X0) Vi and ~�(X) Vi can be calculated using (12). From
(16), the expression for the gradient of k	X � ~�(X)k2 with respect
to X can be calculated as

rX 	X � ~�(X)
2

= rX~k(X;X)

�2

m

i=1

~�(X0) Vi

M

j=1

ei rX~k(X;Tj) (17)

where

rX~k(X;X) = 2n(1 +X X)
n�1

X

�
2

M

M

i=1

n(1 +X Ti)
n�1

Ti (18)

and

rX~k(X;Tj) = n(1 +X Tj)
n�1

Tj

�
1

M

M

i=1

n(1 +X Ti)
n�1

Ti: (19)

As we can determine all these terms with only the kernel, X̂
can be calculated using gradient-descent in a computationally effi-
cient manner. For the initial X0, we use a finite-energy constrained
least-squares estimate, i.e.,

X0 = argmin
X

kY �HXk2 + kXk2: (20)

The algorithms for training and super-resolution using kernel PCA
are summarized in Table I.

IV. EXPERIMENTAL RESULTS

The training data is common to all the experiments. We used 450
images of 350 different individuals taken from the well-known FERET
data set [17] for training. Actual eye positions were used to crop, scale
and align the images. The final images had a resolution of 84 � 108
with 256 gray levels (normalized to have a common intensity).

In the first experiment, we consider super-resolution of face images
from the [17] and YALE [18] databases (top and bottom row, respec-
tively, in Fig. 2). The FERET image is of an individual not represented
in the training set. The parameters of the experiment are as follows:
the magnification factor is 5, the uniform blur is of size 5 � 5, obser-
vation noise variance is 100, and nine low-resolution observations are
used. The low-resolution images were generated by blurring, shifting
and down-sampling the high-resolution image and adding noise. Thus,
the shifts between the low-resolution frames were known exactly and
these were fed to the algorithms.

In Fig. 2, we have given results for different methods—linear PCA-
based prior, Gaussian MRF (GMRF) prior [4], Huber MRF (HMRF)
prior [5] and kernel PCA-based prior with n = 5 and 9. For the PCA
and kernel PCA-based priors, the number of principal components m
is chosen as 250. The values of �Z were found empirically for each
method to yield best results. From the figure, we note that while the
GMRF-based method reduces noise, it leads to excessive blurring of the
facial features. The HMRF-based method does a comparatively better
job but lets in some noise and also blurs out some features (around the
eyes). The kernel PCA-based prior not only suppresses noise but also
brings out the facial features sharply. It yields good estimates even for
the YALE image, although the imaging conditions (camera properties,
etc.) were different from the training set which was FERET. Note that
there is a significant improvement as we go from linear PCA to kernel
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Fig. 2. (a) Original high-resolution images. (b) Low-resolution observations. Super-resolved image and corresponding mean square error (MSE) value using
(c) linear PCA-based, (d) kernel PCA-based (n = 5), (e) GMRF-based, (f) HMRF-based, and (g) kernel PCA-based (n = 9) priors.

Fig. 3. Results on real video sequences (top two rows: frames from VPA database videos. Bottom row: frames from UO database video). (a) Low-resolution
frames. Super-resolved images using (b) GMRF-based method, (c) HMRF-based method, and (d) the proposed method. (e) High-resolution images of individuals.

PCA-based prior. Since best results for kernel PCA were obtained with
n = 9, this was used in the remaining experiments.

We next carried out super-resolution of face videos from the VPA
database [19] and the UO database [20]. These sequences were
re-encoded at lower-resolutions and then super-resolved with magni-
fication factors of 4 and 5, using four and five low-resolution frames,
respectively. For each case, the defocus blur PSF was approximated
by a Gaussian, the eye positions were marked manually for one frame,
and rudimentary correlation was used to estimate the translation
shifts (and hence the matrices Gi) for the remaining frames. Fig. 3
shows the results for different methods along with high-resolution

images of the individuals (though not corresponding exactly to any
of the video frames) for comparison. The overall quality of results
for the real experiments is lower because of the combined errors in
estimating the motion parameters, the blur PSF, and the eye posi-
tions. The GMRF-based method causes blurring of features while
the HMRF-based method yields estimates with many false edges.
However, the proposed method does a better job of bringing out the
true facial features while suppressing artifacts.

We also compared our method with the well-known learning-based
hallucination algorithm [7]. An implementation of the algorithm, pro-
vided by the authors themselves for super-resolving single frames, was
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Fig. 4. Comparison of the proposed method with the hallucination algorithm. (a) Low-resolution frame. Super-resolved images using (b) the hallucination algo-
rithm, and (c) the proposed method. (d) High-resolution images.

used. Both algorithms were given only single low-resolution images
and we compared results using the YALE database image and a frame
from a real low-resolution video taken in our lab. Both images were
super-resolved by a factor of 4 and the results are given in Fig. 4. Since
the method in [7] works by matching image gradient values, we note
that for a high magnification factor and in the presence of noise (syn-
thetically added in the YALE image, and naturally present in the real
case) it produces several artifacts, particularly around the eyes and the
mouth. On the other hand, the proposed method yields improved esti-
mates in both the situations. This is despite the fact that the low-reso-
lution frame for the real case is of low quality.

V. CONCLUSIONS

We proposed a learning-based method for super-resolution of face
images that utilizes kernel PCA to build a prior model for frontal face
images. This model is used to regularize the reconstruction of high-res-
olution face images from blurred and noisy low-resolution observa-
tions. By nonlinearly mapping the face images to a higher-dimensional
feature space and performing PCA on the feature space, we capture
higher-order correlations present in face images. The effectiveness of
the proposed method was demonstrated with several experiments.
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