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Abstract—We propose a method for estimating depth from images captured with a

real aperture camera by fusing defocus and stereo cues. The idea is to use stereo-

based constraints in conjunction with defocusing to obtain improved estimates of

depth over those of stereo or defocus alone. The depth map as well as the original

image of the scene are modeled as Markov random fields with a smoothness prior,

and their estimates are obtained by minimizing a suitable energy function using

simulated annealing. The main advantage of the proposed method, despite being

computationally less efficient than the standard stereo or DFD method, is

simultaneous recovery of depth as well as space-variant restoration of the original

focused image of the scene.

Index Terms—Defocus, stereo, disparity, Markov random field, blur identification,

depth recovery.
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1 INTRODUCTION

AN important area of research in computer vision is the recovery of
3D information of a scene from 2D images. In humans,
stereoscopically presented images provide information about
depth. Julesz [1] showed that random dot stereograms provide a
cue for disparity even when each image does not provide any
high-level cue for depth. Interestingly, Pentland [2] reported a
finding that the gradient of focus inherent in biological systems is
also a useful source of depth information.

Binocular stereo matching is, in general, ambiguous if the
matching is evaluated independently at each point purely by using
imageproperties.All stereomatching algorithms examine candidate
matches by calculating how much support they receive from their
local neighborhood. Marr and Poggio [3] proposed a cooperative
stereoalgorithmbasedonamultiresolution framework.Barnardand
Thompson [4] proposed a feature-based iterative algorithm to solve
the correspondence problem. A large number of papers have
appeared in the literature on stereo analysis and a review of them
can be found in [5]. Conventional stereo analysis assumes an ideal
pin-hole camera model which offers an infinite depth of field.
However, any practical camera system will produce depth-related
blurring. In the depth from defocus (DFD) technique, two images of
an object, which may or may not be focused, and acquired with
different camera settings, are processed to determine depth. The
relative blur between the defocused images serves as a cue for depth.
Unlike stereo,DFDuses a real aperture cameramodel (which ismore
practical). Since the early works of Pentland [2], several approaches
[6], [7], [8], [9], [10] have emerged for solving the DFD problem. A
comparative analysis ofDFDand stereo can be found in [11]. Related
worksondefocusblur estimation in conjunctionwith imagemotion/
disparity are addressed in [12], [13], [14], [15].

It iswell-known that stereo yields accurate estimates of depth but
the depth map is sparse since correspondence can be obtained with
confidence only atprominent feature points.On the other hand,DFD

gives a dense depth map but the accuracy of depth estimates are
generally inferior to that of stereo-basedmethods. Estimates ofdepth
fromdefocus can beparticularly poor in severely blurred regions [8].
In this paper, we relax the assumption of a pin-hole camera model
and propose an algorithm to recover depth from defocused stereo
(DFDS) pairs of images. Defocus and stereo cues are fused to obtain
improved dense estimates of depth. The additional constraints
provided by stereo help in refining the estimates of depth over those
obtained using DFD alone. Tsai et al. [16] have also proposed a
scheme for integrating stereo and defocus. But, they use estimates
from DFD to only initialize their stereo matching algorithm.

In stereo, the disparity is directly related to depth, while in DFD,
it is the blur parameter that relates to depth. Hence, disparity can be
expressed in terms of the blur parameter, the lens settings, and the
base-line distance. This information is used to fuse the twomethods,
thereby deriving the advantages of both the methods. In DFD, since
the blur depends on the depth of the scene, the point spread function
(PSF) in turn becomes a function of depth. For simplicity, most
techniques assume local space-invariance and compute depth.
However, this can lead to poor estimates of depth due to the image
overlap problem [9]. We model the depth and the focused image of
the scene individually as Markov random fields (MRFs). Our
approach avoidswindowing and addresses theDFDS problem in its
generality. Given two defocused stereo pairs of images, we obtain a
focused image of the scene and a dense depth (blur/disparity) map.
An important advantage of our method is that it not only recovers
estimates of depth but also performs effective space-variant image
restoration. The performance of themethod is validated on synthetic
as well as real images. The accuracy of depth estimates is superior
compared to those obtained from DFD or the stereo method. A
dense depth map is estimated without correspondence and
interpolation. The quality of the restored image is also quite good.

Section 2 describes the framework for fusing defocus and
stereo. In Section 3, we discuss the proposed approach for solving
the DFDS problem. Experimental results are given in Section 4
while Section 5 concludes the paper.

2 FUSION OF DEFOCUS AND STEREO

Thebasic structure of our scheme is given inFig. 1.Note thatwehave
two stereo pairs of images. The blurring of the two stereo pairs are
different and so is their disparity since the image pairs are captured
with two different camera settings. We attempt to simultaneously
estimate blur (disparity) and restore one of the focused images of the
scene in the defocused stereo pairs (say the left image). Estimating
the other stereo pair is trivial oncewe know the disparity. As inmost
literature on stereo, we assume epipolar line constraint so that the
disparity is only along one direction, say the j-direction. For the
given observation model, the right image is given by

xRði; jÞ ¼ xLði; jþ dði; jÞÞ þ wði; jÞ; ð1Þ

where dði; jÞ is the disparity associated with the stereo pair at
location ði; jÞ. The noise wði; jÞ is assumed to be zero-mean and
white Gaussian.

Because we use a practical real aperture camera model, points
not in focus will appear blurred and the blur parameter �k for the
kth lens setting is given by

�k ¼ � rkVk
1

Fk
� 1

Vk
� 1

D

� �
; k ¼ 1; 2; ð2Þ

where � is a camera constant, rk is the radius of the lens aperture,
Fk is the focal length, and Vk is the image plane-to-lens distance for
the chosen lens-setting [8]. Given two defocused images of a scene
captured with different sets of camera parameters, the blur
parameter at location ði; jÞ for the two defocused images can be
shown to be related by

�1ði; jÞ ¼ ��2ði; jÞ þ �; ð3Þ
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where

� ¼ r1V1

r2V2
and � ¼ �r1V1

1

F1
� 1

V1
� 1

F2
þ 1

V2

� �
:

Thus, � and � are known constants that depend on the camera
settings. Most DFDmethods assume a Gaussian-shaped blur model
for the cameraPSF, i.e.,hði; jÞ ¼ 1

2�2 expð�
i2þj2

2�2 Þ. Though theGaussian
blur is of infinite extent, a finite spatial extent approximation
(�3� pixels) is reasonable to assume for the Gaussian window. Note
that the PSF is space-varying since � (as given in (2)) depends on the
depth of the scene for a fixed camera setting.

From standard stereo analysis, we know that the depth ðDÞ is
related to the disparity (d), the baseline distance ðbÞ, and the focal
length f of the camera. If the focal length of the camera is changed,
then for the same depth, the disparity changes. Let dk be the
disparity and fk be the focal length associated with the image with
blur parameter �k, k ¼ 1; 2. For stereo [3], we can write

dk ¼
bfk
D

; k ¼ 1; 2: ð4Þ

Eliminating D, we get

d1 ¼
f1
f2

d2:

If we now relax the pin-hole camera model for stereo and
substitute the value of depth in terms of disparity, we obtain
disparity as a function of blur parameter and camera settings, i.e.,

dk ¼ bfk
1

Fk
� 1

Vk
� �k
�rk Vk

� �
; k ¼ 1; 2:

If we assume fk ¼ Vk (since the focal length fk in a pin-hole model
is the same as Vk in the DFD system), the above equation reduces to

dk ¼ b
Vk

Fk
� �k
� rk

� 1

� �
; k ¼ 1; 2: ð5Þ

From the above analysis, once the blur is estimated, the disparity can
be calculated from the known camera settings. Thus, we can get a
dense depth map without explicitly solving the correspondence
problem.

3 DEPTH RECOVERY AND IMAGE RESTORATION

In Section 2, we described the geometric relation governing
defocus and stereo. In the intensity domain, the relation between
the focused and defocused stereo pairs is given by the following
observation models:

gLk
¼ HkxL þ wLk

gRk
¼ HkðdkÞxR þ wRk

; k ¼ 1; 2;
ð6Þ

where the image and noise values have been lexicographically
ordered. The noise terms wLk

and wRk
are assumed to be

independent, white Gaussian with zero-mean and variance �2
w.

The vectors gLk
and gRk

represent the observed defocused images
with blur parameter �k for the kth left and right stereo images,
respectively. The blur matrix Hk corresponds to the space-variant
blurring function

hkði; j;m;nÞ ¼ 1

2��2
kðm;nÞ exp �ði�mÞ2 þ ðj� nÞ2

2�2kðm;nÞ

 !
:

Note that HkðdkÞ is the same as Hk with a shift due to disparity.
The relation as expressed in (6) matches the left and the right
images at the correct location (disparity) and for the correct
amount of blurring which is also a function of disparity. By using a
single parameter disparity, we have eliminated the (dependent)
blur parameter. Since we do not assume local space-invariance, the
blur parameter changes with the spatial location. Hence, the matrix
Hk will not be doubly block-Toeplitz. Given the observation
models in (6) and the relations in (5), we attempt to solve for the
estimates of depth (blur/disparity) and the focused image of the
scene. Note that one needs to estimate only xL (or xR) since they
are just shifted versions of one another. From (3), it is clear that we
need to estimate either �1ði; jÞ or �2ði; jÞ; 8 i; j. If �k is known, the
disparity can be calculated from (5).

The problem of recovering the focused image and the space-
variant blur parameter given two defocused stereo pairs is ill-posed
and may not yield a unique solution, unless additional constraints
like smoothness are added to restrict the solution space. We model
both the space-variant blur parameter and the focused image of the
scene as Markov random fields (MRFs). The concept of modeling
depth/imageasanMRF iswell-known in the literature [17]. Since the
change in the depth of a scene is usually gradual, the space-variant
blur parameter also tends to have local dependencies. The utility of
theMRFmodel lies in its ability to capture local dependencies and in
its equivalence to the Gibbs random field [18]. Moreover, the MRF
model preserves locality in the posterior distribution. This helps in
reducing the computational complexity substantially.

LetS denote the random field corresponding to the space-variant
blur parameter �1 andXL denote the random field corresponding to
the left focused image xL (the intensity process). Let GL1

, GL2
, GR1

,
and GR2

represent random fields corresponding to the four
observed images, gL1

, gL2
, gR1

, and gR2
, respectively. The random

field S is assumed to be statistically independent of both XL and
noise fieldWLk

. This assumptionmay not always hold good [19]. Let
S take P possible levels and XL take M possible levels.

Since S and XL are modeled as MRFs, we can write

P ðS ¼ sÞ ¼ 1

Zs
exp �UsðsÞ½ �; ð7Þ

P ðXL ¼ xLÞ ¼
1

ZxL
exp �UxL ðxLÞ½ �: ð8Þ

Note that s is the same as the blur parameter �1. In (7), s has been
used for notational consistency.The terms Usð:Þ and UxL ð:Þ corre-
spond to the energy functions associated with the space-variant
blurring process in the left image and the intensity processes in the
left image, respectively. Given a realization of S, i.e., the blur
parameter �1ði; jÞ, 8 i; j, the blurring function h1ð�; �Þ is known and,
hence, the matrixH1 is also known. Moreover, h2ð�; �Þ andmatrixH2

can then be determined because �2ði; jÞ ¼ � �1ði; jÞ þ �. Using (5),
the disparity can be calculated.

Given the four observed images, the a posteriori conditional
joint probability of S and XL is given by

P S¼s;XL¼xLjGL1
¼gL1 ;GL2

¼gL2 ;GR1
¼gR1 ;GR2

¼gR2ð Þ¼
P S¼s;XL¼xLð ÞP GL1

¼gL1
;GL2

¼gL2
;GR1

¼gR1
;GR2

¼gR2
jS¼s;XL¼xLð Þ

P GL1
¼gL1

;GL2
¼gL2

;GR1
¼gR1

;GR2
¼gR2ð Þ :

ð9Þ

From Bayes rule, and the independence of S and XL, the problem
of simultaneous estimation of blur and focused image can be posed
as the following MAP problem:
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Fig. 1. Basic structure of depth from defocused stereo (DFDS).



maxs;xLP ðGL1
¼ gL1

; GL2
¼ gL2

; GR1
¼ gR1

; GR2
¼ gR2

jS ¼ s;XL ¼ xLÞP ðS ¼ sÞP ðXL ¼ xLÞ:

From (6) and using the fact that S and XL are statistically
independent of each other as well as the noise WLk

, we get

� logP ðGL1
¼ gL1

; GL2
¼ gL2

; GR1
¼ gR1

; GR2
¼ gR2

jS ¼ s;XL ¼ xLÞ ¼X2
k¼1

jjgLk
�HkxLjj2

2�2w
þ
X2
k¼1

jjgRk
�HkðdkÞxRjj2

2�2w
:

ð10Þ

Assuming first-order smoothness for the focused image as well as
the blurring process, the posterior energy function to be minimized
can be equivalently written as

UP ðs; lsi;j; vsi;j; xL; l
xL
i;j ; v

xL
i;j Þ ¼ Udef data þ Usm blur þ psm blur

þ Usm int þ psm int þ Ust data;
ð11Þ

where the horizontal and vertical binary line fields corresponding to
the blurring process and the intensity image are denoted by lsi;j, v

s
i;j,

lxLi;j , and vxLi;j , respectively. Line fields have been incorporated into the
energy function in order to preserve the discontinuities [18].

In (11), the term Udef data corresponds to data fitting based on

the defocus information and is given (from (10)) as

Udef data ¼
jjgL1

�H1xLjj2

2�2w
þ jjgL2

�H2xLjj2

2�2w

þ jjgR1
�H1ðd1ÞxRjj2

2�2w
þ jjgR2

�H2ðd2ÞxRjj2

2�2w
:

ð12Þ

The term Usm blur incorporates smoothness for blur and is given as

Usm blur¼
X
i;j

�s½ðsi;j�si;j�1Þ2ð1�vsi;jÞþðsi;jþ1�si;jÞ2ð1� vsi;jþ1Þ

þðsi;j � si�1;jÞ2ð1� lsi;jÞþðsiþ1;j � si;jÞ2ð1� lsiþ1;jÞ�;
ð13Þ

where �s is the regularization parameter corresponding to the blur

parameter. Penalty term psm blur is used to prevent spurious

discontinuities and is given by

psm blur ¼
X
i;j

�s½lsi;j þ lsiþ1;j þ vsi;j þ vsi;jþ1�; ð14Þ

where �s is the associated weight for penalty.
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Fig. 2. (a) Original focused image. (b) Left defocused image with blur �1. (c) Stereo pair of (b). (d) Left defocused image with blur �2. (e) Stereo pair of (d). (f), (g), and
(h) Values of �1 obtained using DFD alone, stereo alone, and the proposed method, respectively. (i) Space-variant restored image using DFDS.



Along similar lines, we have a smoothness term Usm int and a
penalty term psm int for the intensity process also and these are
given as follows:

Usm int ¼
X
i;j

�x½ðxLi;j
� xLi;j�1

Þ2ð1� vxLi;j Þ þ ðxLi;jþ1
� xLi;j

Þ2ð1� vxLi;jþ1Þ

þ ðxLi;j
� xLi�1;j

Þ2ð1� lxLi;j Þ þ ðxLiþ1;j
� xLi;j

Þ2ð1� lxLiþ1;jÞ�
and psm int ¼

X
i;j

�x½lxLi;j þ lxLiþ1;j þ vxLi;j þ vxLi;jþ1�;

ð15Þ

where �x is the regularization parameter corresponding to the
intensity image while �x weights the penalty for introducing a
discontinuity. Finally, the term Ust data corresponds to data fitting
due to stereo and is given as

Ust data ¼ �st jjgR1
� gL1

ðd1Þjj2 þ jjgR2
� gL2

ðd2Þjj2
h i

; ð16Þ

where the parameter �st weights how well the stereo image pairs
match in terms of disparity.

The posterior energy function given by (11) is nonconvex and
algorithms based on steepest-descent are prone to get trapped in
local minima. We choose the simulated annealing (SA) algorithm
[18] for minimizing the posterior energy function so as to obtain
estimates of the space-variant blur parameter and the focused
image simultaneously. For this purpose, a temperature variable is
introduced in the objective function. The cooling schedule was
chosen to be linear. Since the random fields associated with SV
blur and image are assumed to be statistically independent, the
values of blur si;j and image xi;j at every location ði; jÞ are changed
independently. Parameter estimation in MRF is a difficult task.
Here, we choose the MRF parameters in an ad hoc way.

From (11), it may be noted that the estimates of depth and the
focused image of the scene using DFD alone can be obtained by
simply leaving out the stereo terms [9]. However, as we shall show
in the next section, the additional constraints provided by stereo
are very useful in refining the estimates of depth.

4 EXPERIMENTAL RESULTS

We demonstrate the performance of the proposed method in
estimating blur (or disparity or depth) and restoring the focused
image. The number of discrete levels for the blur parameter was
chosen to be 64. For the intensity process, 256 levelswere used (same
as the CCD dynamic range). For DFD andDFDS, the window-based
method of Subbarao [7] was used to obtain initial estimates of �1.
The method of Roy and Cox [20] and the implementation available
at http://www2.iro.umontreal.ca/~roys/publi/iccv98/code.html
was used to get the stereo estimates.

In the first experiment, defocused versions of a random dot-
pattern image (Fig. 2a) were generated. The blurring was stair-case
type and we chose �2ði; jÞ ¼ 0:5�1ði; jÞ. Figs. 2b, 2c, 2d, and 2e show
the two defocused stereo pairs of images thus generated. Fig. 2f
shows the initial estimates of the blur �1 using DFD alone (i.e.,
without the stereo constraints). Although one canmake out the stair-
case nature of the blur, the estimates are not very satisfactory. The
rms value of the error in the estimate of the blurwas found to be 0:55.
Since the blur parameter and disparity are related, estimates of the
blur obtained using focused left-right stereo pairs are shown in
Fig. 2g. The rms value of the error is 0:38. The proposedmethodwas
next used to estimate the blur/disparity and the original focused
image. The values of the various parameters used in the
SA algorithm were as follows: T0 ¼ 10:0, �s ¼ 5000:0, �f ¼ 0:005,
�st ¼ 0:01, �s ¼ 10:0, �f ¼ 15:0, �s ¼ 0:4, �f ¼ 25:0, �s ¼ 0:1,
�f ¼ 6:0, number of annealing iterations ¼ 200, and the number of
metropolis iterations¼ 100. Here, T0 is the initial temperature, while
�s and �f are thresholds for deciding the presence of an edge in the
blur and in the image, respectively. The variances �s

2 and �f
2 are

used in a Gaussian sampler to generate new samples of blur and
intensity values and these are then used in the SA algorithm to

generate a new realization. The estimated SV blur parameter and the
restored image using the proposed method are shown in Figs. 2h
and 2i, respectively. From the figure, it can be seen that the blur is
well-captured and the edges are sharper. The improvement is
particularly significant in regions of large blur where defocus is
known to perform poorly due to reduced spectral content. This is
also reflected in the rms error which now reduces to 0:12. Also, the
restored image (which is an estimate of the original image in Fig. 2a)
is quite good.

The method was next tested on the corridor image (obtained
from CIL/CMU database) and the defocused stereo image pairs are
given in Figs. 3a, 3b, 3c, and 3d. The defocused images were
obtained from the ground-truthed disparity and depth values in
conjunction with an appropriate choice of camera parameters. The
true depth values are given in Fig. 3e. The error in the estimates of
depth using the DFDmethod is shown in Fig. 3f. A darker gray level
implies smaller error. The restored image is shown in Fig. 3i. The
normalized rms error for the depthmapusingDFD is 0:209.We note
that the estimates are poor at places of large blur where there is not
enough spectral content. Note that the ball is quite severely blurred
and, hence, the depth estimates in that region are not good for the
DFD method. Depth estimates were next obtained using focused
stereo pairs of the corridor image. The error in the estimates of depth
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Fig. 3. (a) Left defocused image. (b) Right defocused stereo image with the same
camera settings as in (a). (c) Left defocused image with different camera
parameters. (d) Right defocused stereo pair with same camera settings as in (c).
(e) True values of depth. (f) Error in the estimated values of depth using the DFD
scheme. (g) Error in the estimated values of depth using only stereo. (h) Error in the
estimated values of depth using the proposed scheme. (i) Reconstructed image
using DFD alone. (j) Reconstructed image using defocus as well as stereo cues.



are displayed in Fig. 3g and the normalized rms error is 0:264.
Results corresponding to the proposed scheme are shown in Figs. 3h
and 3j. By fusing defocus and stereo cues, the depth estimates clearly
improve. The error values are smaller compared to both DFD and
stereo.We note that the estimates of depth near the cone and the ball
are quite good. The rms value of the error in the estimate of depth
reduces to 0:149. Because the depth estimates for DFDS are better,
the restored image is also cleaner with few artifacts. The ball is quite
focused and emerges nicely in the restored image (Fig. 3j) using
DFDS as compared to DFD (Fig. 3i).

Finally, the performance of the proposed scheme was tested on
images captured in our laboratory. The left and right defocused
stereo pairs are shown in Figs. 4a, 4b, 4c, and 4d. Using DFD alone,
the depthmap and the focused imagewere first estimated and these
are shown in Figs. 4e and 4g, respectively. From the figures, we note
that although the recovered image is reasonably good, the depth
map is not satisfactory. The estimates of depth and the focused
image using the proposed scheme are given in Figs. 4f and 4h,
respectively. The improvement due to fusion of defocus and stereo
is amply evident. Some of the visible artifacts that were present in
the restored image using DFD alone are now completely gone
(particularly at the end nearer to the camera). The restored image is
uniformly focused everywhere and is of very good quality. Also, the
planar nature of the variation in the depth of the scene is better
brought out by the proposed method. Since a real aperture camera
cannot bring all points in a 3D scene simultaneously into focus, we
do not have focused image pairs of the scene for computing depth
using stereo alone. A major significance of our work lies in the
following fact: Due to the physics of the problem, no real aperture
camera can yield the image that the proposed method has been able
to produce in Fig. 4h. In effect, Fig. 4h is a synthesis of the focused
image of the scene had the camera brought the entire 3D scene into
focus (this is not practically possible since a real aperture camera can
only bring points at a single depth into focus).

5 CONCLUSIONS

We have proposed a new method for estimating depth that
combines defocus and stereo cues for images captured with a real
aperture camera. The method uses ideas from both DFD and stereo
to its advantage. The estimates of depth are superior compared to
both DFD and stereo. The recovered depth map is dense and no
feature matching or interpolation is required. The method also
simultaneously restores a focused image of the scene.
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Fig. 4. (a) Left defocused image. (b) Stereo pair of (a). (c) Left defocused image

with different camera settings. (d) Stereo pair of (c). (e) Estimated values of depth

using only DFD. (f) Estimated values of depth using the proposed scheme.

(g) Reconstructed image using DFD. (h) Restored focused image of the scene

using the proposed method.


