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Abstract—A general theory for companding log domain filters is
proposed which combines not only exponential mappings, but also
a new translational mapping approach which guarantees suitable
operating conditions in any log domain filter. The filter equations
resulting from the use of the theory ultimately contain translinear
terms which are known to be realizable using translinear tech-
niques. A discussion of the design of the companding filters, re-
garding the economical use of translinear loops and the convenient
selection of system parameters, is offered which leads to first- and
second-order circuit designs. Finally, the noise performance of an
example design is investigated using a carefully crafted large-signal
simulation technique, showing clearly the advantage of the com-
panding filter approach.

Index Terms—Analog filters, companding, log domain filters,
system theory.

I. INTRODUCTION

RECENTLY, there has been considerable interest in
so-called externally linear, internally nonlinear (ELIN)

filters [1], in which we might include classical linear filters as
a subset. Because ELIN filters are in general quite nonlinear
internally, classic linear filter theory is not directly applicable.
Nevertheless, a fairly complete theory for externally linear
filters has begun to develop, with notable contributions found
in [2]–[4], regarding state space synthesis, in [5] and [6]
regarding dynamic translinear analysis, and in [7] and [8]
regarding modular analysis, although a number of interesting
contributions have been made elsewhere. The current interest in
ELIN filters was spawned in part by the pioneering work found
in [9] and [10]. Concurrent to some of this work was that in [11]
and [12] regarding syllabic companding filters. An interesting
way to compare the bulk of the recent work, primarily related
to log domain filters, and that of [11] and [12] is to consider
log domain filters to be instantaneously companding, which
has been the choice of several researchers. Unfortunately,
such a characterization clouds the concepts if one chooses to
investigate syllabic companding log domain filters, as in [13]
and [14]. In fact, the goal of this paper is to propose a general
approach to the design of syllabic companding log domain
filters, which we shall assume are another subclass of ELIN
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filters. The reader may find the discussion in [15] interesting
regarding companding in log domain filters. The value of
syllabic-companding log domain filters lies in their potential
for high speed and/or low power, low circuit complexity, and
wide dynamic range.

In a channel with limited dynamic range, such as an ac-
tive filter, there is always a tradeoff to be made between
signal-to-noise ratio (SNR) and headroom. Specifically, the
SNR is improved by preamplification, which minimizes the
effective contribution of the channel noise. Even if this gain
is unwanted, it may be removed by attenuation after the noisy
channel, thereby restoring the signal level while attenuating
the channel noise. The price paid for this is that large inputs
that would have been acceptable as inputs to the channel will
now be distorted by the channel due to the preamplification.
A straightforward resolution for this dilemma has been known
and adopted for many years and is known as companding. This
method varies the preamplifier gain as a function of signal level
in such a way as to keep the signals applied to the channel near
the top end of its dynamic range at all times, thereby improving
the SNR without sacrificing headroom. It is important to
realize, however, that in order for the overall system response
to be unaffected by the variations in preamplifier gain, a
post-amplifier must be used to compensate for the front end
gain variations.

A very well-known example of a successful companding
system is the Dolby system [16]. An important aspect of the
Dolby system is that it is a “syllabic” companding system.
Namely, it varies the preamplifier gain in accordance with
the short term average—that is, on a syllabic time scale—of
the signal as opposed to the instantaneous level of the signal.
This is crucial to the performance of the system, since the
instantaneous level of the signal at each point in a system
is a complex function of the frequency and phase response
of the subsystems. In systems having the property that the
magnitude response and group delay is fairly flat for each
subsystem, instantaneous companding can be implemented
quite sucessfully. However, most channels, and certainly active
filters, do not possess this property. Therefore, the right amount
of instantaneous gain needed to optimize one part of a system
may not work for another part. While one may envision systems
with many variable gain blocks, in practice only one main gain
control signal is used. Hence, a measure of signal intensity that
is insensitive to at least group delay variation in the passband is
desirable. RMS detection is a widely used option.

Unfortunately, rms detection is not a perfect solution to the
problem of level detection in companding systems. This is be-
cause it inherently introduces delay between the actual signal
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level at a given time and its rms level estimate. As long as the
level of the signal varies slowly compared to the time constant
of the rms detector, no problems arise. However, when the input
signal level suddenly increases, it can overload the system until
the rms detector responds. In practical syllabic-companding sys-
tems, such as the Dolby system, extra circuitry is used to min-
imize the transient overload to a point where it is acceptable to
the user. In this way, users get the benefit of a perceived increase
in dynamic range. The goal of this paper is to gain the advan-
tages of syllabic companding for active, especially log domain,
filters. It is recognized, however, that syllabic-companding fil-
ters will suffer the same transient overload problems encoun-
tered in any syllabic-companding system.

The idea of syllabic-companding filters has been proposed
in [11]. The associated technique systematically varies the gain
of an input applied to a filter along the lines of the above dis-
cussion; however, changes must be made internal to the filter
to correct for changes in the dynamics of the filter due to the
time-varying input gain. Syllabic-companding filtering using
this principle has been described in [12] and has been used in
conjunction with log domain filtering in [13]. In the latter imple-
mentation, the bias currents of the main filter were kept constant.
However, as suggested in preliminary form in [14], companding
can also be done by dynamically adjusting the bias currents in
such a way as to minimize the standing currents required during
intervals of relatively constant signal strength. There it has been
suggested that one may view the variation of bias currents in
response to signal level as the dual operation to gain change. In
particular, one may adjust the gain of the front end of the system
to ensure that the signal is at the top end of the dynamic range,
or equivalently, one may vary the top end of the dynamic range
of the system to match the signal level. As long as the noise
floor of the system moves appropriately with variations in the
top end of the dynamic range, then the SNR will be improved
as in companding using explicit gain variations. Of course, the
dynamic bias current adjustment must be done in such a way
that the external behavior of the filter remains linear.

This paper will propose a complete theory, and an accompa-
nying design approach, for the realization of companding log
domain filters based on our dynamic biasing approach. Sec-
tion II begins by introducing the idea of translational mapping
to the state space equations for a filter. This idea is the key to the
systematic design of companding filters from our perspective. It
is also valuable in improving earlier methods for the design of
log domain filters. We follow this with a discussion of parameter
selection. In Section III, the exponential mappings for log do-
main filters are applied to the linearly mapped, via translation,
state equations. This is shown to yield nodal equations for com-
panding log domain filters containing various translinear terms,
which are realizable using translinear loops. A general set of
equations for a companding filter are shown and two special
cases—that is, a first-order and a second-order filter—are pre-
sented to aid in developing the concepts. Finally, in Section IV,
carefully developed SPICE simulation results, using transient
analysis, are given regarding the noise behavior of one of the
example circuits proposed in Section III.

II. A T RANSLATIONAL MAPPING APPROACH

A. Introduction

In light of the discussion above, we now offer a systematic
formulation for systems explicitly incorporating dc bias currents
to establish the dynamic range and, in particular, syllabic-com-
panding log domain filters. We assume that state equations for
a given filter are specified in the following standard form:

(1)

where the input and the output are assumed scalars,
is the state vector, is the by state

matrix, and are dimensional vectors, andis a scalar.
The system of (1) possesses a transfer function, , depen-
dent upon the parameters in (1) given by the formula

(2)

In anticipation of the log domain realizations to be discussed
later, we will require that the input be a strictly positive signal
so that it may be applied to a diode, or equivalent combination of
transistors, which provides the logarithm of the input. Typically,
this input signal would be the sum of an original ac input signal
and an added offset. Since the output is typically the current in
an output transistor, we recognize that an always positive input
will have to result in an always positive output. In the process,
each of the state variables will have to be strictly positive for all
times, since these variables correspond to currents in transistor
junctions as well.

Ensuring always positive state variables and output is not al-
ways a trivial matter. Consider the case where (1) describes an
ideal bandpass filter, with outputequal to , as shown explic-
itly in the second-order example of Section III. Suppose that a
sinusoidal ac input is to be applied to the filter, and that for the
purpose of log domain filtering, a dc component is added to the
ac input sufficient in size to guarantee that the composite input

is always strictly positive. Since this is a linear system, the
superposition principle states that the output corresponding to
this composite input will consist of a dc and an ac component,
where each component is determined by the gain of the system
at the respective frequencies. Specifically, the output ac compo-
nent will have a magnitude and phase determined by the transfer
function , evaluated at its frequency. On the other hand, the
dc component of the output is determined by the dc gain of the
system. Since we have taken the case of a bandpass filter, the
ac gain will be nonzero, while the dc gain will be equal to zero.
Hence, adding dc to the input in this case does not guarantee that
there will be sufficient dc in the output. Clearly in this case the
output, which equals one of the state variables, will be a purely
ac signal—that is, a signal having positive and negative values
over time—which is unacceptable in log domain filters.

B. The Translational Mapping

In order to address this problem, let us consider a translational
mapping applied to (1) which will allow us to guarantee that all
state variables will remain positive at all times. Suppose that
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we adopt the change of variables in the state equations of (1)
specified below as

(3)

where each of and are (possibly) time-varying offsets
chosen such that the new variablesand are always positive.
With these substitutions, (1) becomes

(4a)

(4b)

Observe that the transfer function from the original input
to the output is unchanged; however, the translated internal
variables and are now always positive regardless of the
overall transfer function. Therefore, the internal variables are
completely compatible with the exponential mappings used
for the realization of log domain filters [17]. The extra terms
introduced into the equations of (4), relative to those of (1), by
the translational mappings appear as additional inputs and, as
such, will ultimately be realized in a way similar to the nominal
input .

C. The Noncompanding Case

Before exploring the central purpose of this paper regarding
companding filter design, it is both of interest and helpful in un-
derstanding to consider the special case where the offsets
and specified above are constants, which corresponds to the
noncompanding case typically covered in the literature thus far.
The choice of the offsets for this case is very instructive. Let
us assume that the input offset is chosen equal to the largest
peak excursion of the input, plus a safety margin, such that the
composite input is always positive and greater than zero by some
minimum value. This will guarantee that the input logging de-
vice in the log domain filter will always run with at least a suf-
ficient current to guarantee good performance, e.g., good band-
width. Continuing, let us choose the state variable offsets
to be multiples of the input offset, determined by the maximum
ac gain that a signal may have at any frequency. Such gains are
found, for example, by using the intermediate transfer functions
discussed in [18]. In this way, the composite state variables
will be bounded away from zero by some amount which will not
only guarantee that they are strictly positive, but also that the
currents in the associated transistors in the eventual log domain
filters will never get too close to zero. Denoting the respective
scale factors for each state variable by, we have the following
state space formulation for the constant-translated system:

(5a)

(5b)

where

(6)

The net result of the translational mapping, as shown in (5),
has been to introduce an additional constant input, proportional
to , into each of the equations. These inputs are completely
analogous to the “dummy” inputs introduced in [3] to permit a
suitable dc equilibrium solution. Here, however, the introduc-
tion of the variables is done in a way that guarantees that no
internal variables may be over driven.

Since each of the terms in the equations may result in some
additional circuitry in the ultimate circuit realization, it is usu-
ally desirable to suppress the new terms where possible. Using
the state space transformations described elsewhere, this can
be systematically achieved. Specifically, if a nonsingular state
space transformation matrix is used as in [2] to produce a
new set of equations, we may in the process eliminate the vector

. Using the results shown in [2], for example, on the im-
pact of this transformation on and , we have

(7)

Therefore,

(8)

The final result in (8) states that there are many ways to choose
such that the vector of constants , added to the state

equations, as shown in (5), due to the translation of the vari-
ables will be identically zero. This constraint is a generalization
of that given in [2] for allowing a suitable dc equilibrium. By
using (8), however, not only is a suitable dc equilibrium guaran-
teed, but also the needed headroom for each of the state variables
in consideration of the intermediate transfer functions [18]. The
result in (8) is identical to the analogous one in [2] for the spe-
cial case where each of the ac gainsis assumed to be equal
to 1. In all cases below, we shall assume that the transforma-
tion, using a nonsingular matrix , has already been applied,
leaving a convenient state space description of the form of (1).
In general, one may arrive at a convenient form after some trial
and error, although the examples given in Section III are typical
cases where little or no manipulation is required.

D. The Companding Case

Now let us move on to the case where the offsets in the trans-
lational mappings are time-varying, corresponding to the syl-
labic-companding case, which is the main case we wish to con-
sider. We may proceed exactly as before in relating the state
variable offsets to the input offset, through a vector of
gain constants with the result

(9a)
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(9b)

Note that, while the output equation is unchanged, the state
equations now include a vector of new inputs proportional to the
time derivative of . The likelihood of such a quantity being
available directly as a voltage or a current is small; however,
by the use of an additional first-order filter, which we shall call
“the auxiliary filter,” we can eliminate this problem. Specifi-
cally, suppose that the offset was obtained by a first-order
lowpass filtering operation on another input . In practice,
would be the output of a level detector operating on the ac input
to the system plus some relatively small dc component added to
ensure that , and hence , would remain above some min-
imum acceptable value. The level detector employed would typ-
ically comprise a rectifier, a peak and/or rms detector, and some
scaling to account for crest factor. Due to the first-order lowpass
filtering, the time-varying offset would obey a differential
equation of the form

(10)

We will refer to the filter described by (10) as the “auxiliary
filter” in the discussion below, since it leads to additional cir-
cuitry in the final companding filter implementation. Using the
result in (10) to eliminate the derivative of in (9), we have

(11a)

(11b)

where

(12)

This result shows that, for the companding case, we introduce
as many as two additional new inputs to each state equation;
however, each of these new inputs is proportional to an undif-
ferentiated system signal. We will refer to the filter described by
(11) as the “main filter” in the discussion below.

As in the case of constant offsets, the filter described by (11),
having the auxiliary filter described by (10), may be simplified
in its final implementation by using certain degrees of freedom
which are available. First, one may employ a transformation
using a nonsingular matrix, as in (7) and (8), to eliminate some
or all of the components of the vector. Alternatively, one
may vary the components in the vectorto reduce the number
of nonzero components of . Note that, while there is a min-
imum value allowed for each of the components ofto ensure
enough headroom for the respective state variables, any of the
components of may be increased above this minimum without
causing clipping problems. On the other hand, increasing the
components of will increase the standing currents in transis-
tors in the ultimate log domain circuit realization, causing an
increase in noise. This increase in noise, however, may be com-
pensated for by the decrease in circuit complexity resulting from
fewer terms in the state equations.

The other design parameter which may be varied to eliminate
nonzero terms in the main filter state equations is—that
is, the cutoff frequency of the auxiliary filter. However, this
parameter must be varied in consideration of system speci-
fications. This relates to the fact that syllabic companding,
as explained in the introduction, requires that the level of the
system input signal be monitored and used to control the
companding gains. Specifically, the offset produced at the
output of the auxiliary filter must correspond to the desired
control signal for proper companding. Since level detectors
used in syllabic-companding systems inherently employ low-
pass filtering, it is reasonable to assume that the auxiliary filter,
in our case, may provide that function. Certainly, this would be
economical, since the auxiliary filter would now perform the
joint functions of removing unwanted derivative terms in the
main filter and of envelope (as it is often called) filtering for the
syllabic-companding operation. Unfortunately, however, it is
difficult to achieve these functions simultaneously in practice.
This is because the cutoff frequency of the envelope filter is
usually set much lower than the critical frequencies of the
main filter to avoid undesirable “pumping effects”—that is,
signal-related noise modulation—in the overall companding
system. Using typical scenarios, it has been our observation that
the values of , needed to implement a desirable envelope
filter, do not typically enable the elimination of unwanted
terms in the main filter equations. As a result, we will take the
approach in this paper that is a free parameter, allowing the
simplification of the main filter. We will assume, therefore, that
the overall envelope filtering, which is necessary to achieve the
desired syllabic-companding operation, will be provided in the
level detection circuitry that produces the signal designed
in consideration of the filtering action of the auxiliary filter.

III. L OG DOMAIN FILTER REALIZATION

A. Introduction

Given the above preliminaries, we are now in a position to
design log domain filter realizations of syllabic-companding fil-
ters. In order to facilitate the design, we will offer a new for-
mulation which combines the exponential mappings introduced
in [2] with the translinear ideas described elsewhere—for ex-
ample, in [5], [6], and [19]. First, observe that the translational
mappings in Section II provide a simple systematic way to guar-
antee that all of the system variables—that is,, and each of the
state variables—will remain strictly positive at all times. There-
fore, if exponential mappings are now used to substitute for all
of the system variables, then these mappings will be well de-
fined. Such mappings have been shown—for example, in [2]
and [3]—to produce the circuit equations for log domain filters,
where all system variables are assumed to be currents. Since
the synthesis of log domain filters is our goal, consider the fol-
lowing mappings for the system variables in (10) and (11):

(13)
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where and are constants typically equal to the reverse sat-
uration current and thermal voltage, respectively, of a bipolar
transistor. Using (13), we have

(14)

where the constants and have units of capacitance
such that their multiplication with the derivatives of the volt-
ages—that is, , etc.— yields currents.

B. A First-Order Example

Equations (13) and (14) may be substituted into (10) and
(11), yielding the equations necessary for a general log domain
companding filter, excluding the level detection circuitry. Be-
fore giving this general formulation, however, let us consider
a simple first-order case which highlights the important ideas
with a minimum of complexity. Specifically, let us begin with
a first-order lowpass filter, characterized by the following equa-
tions:

(15)

Notice that the operators , and from (1) are simply
scalars in this case and have been given parenthetically in (15).
Because this is a first-order filter with dc gain equal to, the
maximum gain to the state variablefrom the input is . Any
value of the gain constant (scalar in this case) that equals or
exceeds this value will ensure adequate headroom in the final
implementation. Thus, adopting the offsetsand for the
input and the state variable, respectively, in (3), we obtain
new system equations where all system variables are strictly
positive as long as is at least as large as the maximum peak
value of . Proceeding along the lines above, we have

Main Filter

Auxiliary Filter

(16)

Observe that is a scalar in (16). Following the lines of the
discussion in Section II, we will assume that the flexible filter
parameters and are chosen such that , thereby sim-
plifying the main filter equations. With this assumption, and by
using the relations in (14), we obtain

Main Filter

Auxiliary Filter

(17)

where the currents and are related to the original system
parameters as follows:

(18)

The differential equations in (17) represent nodal equations in
the final circuit implementation, where currents in grounded ca-
pacitors are equal to a combination of a current source and one
or more “translinear” terms—that is, terms containing products
and ratios of currents.

In order to finish the design, we offer the following approach
to realizing the “translinear” terms in (17). In each case, these
terms are the product of two currents divided by a third. Such a
current is easily achieved by a transistor connected in a suitable
translinear loop [19] as shown with the help of Fig. 1, where
the needed extra biasing circuitry is not shown. We assume for
the present that . To begin the explanation, we also as-
sume that the voltages labeled are equal to zero, and that
the scenario of the figure regards system variablesand ,
which are arbitrary and could represent, for example,and ,
respectively, in the present case. In consideration of the map-
pings in (13), these system variables are currents exponentially
related to respective voltages and . In a physical circuit
transistors carrying the currents and may or may not
actually exist. Nevertheless, the mappings suggest that if tran-
sistors were connected to the voltagesand , as indicated
by the dotted lines, then they would carry the respective cur-
rents and . As a result, we may imagine the transistors
connected via the dotted lines to be a part of the circuit even if
they are not physically present. We assume that base currents
are negligible so that such a connection would cause no loading
in any case. Still assuming the voltage to be zero, we have
the translinear loop consisting of the three transistors and the
diode. It is a simple matter to show [19] that the emitter current

is exactly given by . Hence, the translinear terms
in (17) are easily realized via a diode level shift—that is, by a
diode carrying a current of amps—and an emitter follower
bridging the voltage nodes related to the respective system vari-
ables as shown in the figure, sourcing the translinear term cur-
rent into the node labeled .

Notice if we now allow the battery voltages, labeled , to
be nonzero, the current is unchanged regardless of the value
of . This says that if all of the voltages related to the system
variables in (13) were augmented by the same constant, the
translinear terms in the equations in (17) would be unchanged.
Assuming is constant, none of the derivative relations in
(14) would be affected either; therefore, (17) is valid regardless
of the possibility of across the board level shifting. This fact is
useful in allowing greater flexibility in the design of actual log
domain filters and can be easily incorporated into the mappings
of (13) without changing the log domain filter equations of (17).
Specifically, (13) becomes

(19)
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Fig. 1. Simplified loop showing the implementation of a positive translinear
term.

Fig. 2. Simplified loop showing the implementation of a negative translinear
term.

Nonzero values of will be used in the second-order filter
case discussed below.

The above discussion related to Fig. 1 covers only the case
where the translinear term to be implemented is positive. When
there is a negative sign, alternate circuitry must be employed as
discussed elsewhere [2]. Fig. 2 shows a way to realize a neg-
ative translinear term. In this case, there is again a translinear
loop formed by the three transistors and the diode, and the cur-
rent, labeled , being drawn from (yielding the negative sign)
the node labeled is again given by , regardless
of the value of . It should be noted that the actual circuitry,
not shown, needed to bias the diode in this case is more compli-
cated in practice than that needed to bias the diode in the case
of Fig. 1. Nevertheless, it is straightforward, and ways to do this
have already been proposed in the literature [20]. Thus, we have
a basic synthesis procedure for the implementation of any of the
translinear terms which appear in (17).

Because we wish to develop methods for synthesizing eco-
nomical designs, a slight generalization of the above ideas is
worth considering. Since each translinear term requires a level
shifter, indicated by the diode in Figs. 1 and 2, it is advanta-
geous to use the same level shifter more than once where pos-
sible in the final design. This can be done in cases where two
translinear terms share the same type of product terms, having
only different denominators. While there are many possibilities
for this in general systems, we wish to consider a certain case
relevant to the companding filters of this paper. Specifically, the
auxiliary filter contains a translinear term which shares product
terms often occurring in one or more of the translinear terms of
the main filter—that is, a bias current times the auxiliary filter
input . The difference between these comparative terms in
general is that the bias currents are not the same, which neces-
sitates the use of a different level shifter for each. It is possible,
however, to scale the bias current—for example, by a factor

Fig. 3. Log domain implementation of a first-order companding filter.

—in a translinear term, without altering the value of the term,
by also scaling the denominator quantity in the same way—that
is, . This suggests that we
may rewrite the auxiliary filter equation of (17) as shown in (20)
without changing its basic operation. Specifically,

Auxiliary Filter

(20)

Fig. 1 describes the situation in a way specific to (20) if we
let be an arbitrary positive constant. The net bias current

, flowing through the level shifting diode, can now
be varied through the parameter to be compatible with
the corresponding translinear term in the main filter—that
is, the translinear term involving the product of and .
Because the right-hand side of the differential equation for
the auxiliary filter is unchanged, the filtering operation on
is unchanged—that is, the cutoff frequency of the auxiliary
filter is still . Observe, however, in Fig. 1 that the “output
current” from the rightmost transistor is now , instead of

. As long as this is taken into account in the final design,
it represents no particular problem. Integer values of, for
example, make this a very simple matter in practice.

With this synthesis procedure for the translinear terms in (17)
and (20), a log domain realization of the companding first-order
lowpass filter is straightforward. If we choose and

, which provides a simple, yet very practical, special
case, we obtain the composite filter equations

Main Filter

Auxiliary Filter

(21)

Fig. 3 shows the realization of the filter equations in (21), where
the level shifter comprising transistor has been used to im-
plement the corresponding translinear terms in the main and
auxiliary filters. In fact, each of the translinear loops used to
implement the various translinear terms is easily identified by
studying the schematic. Appropriate current mirrors, not shown
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Fig. 4. Simplified realization of the bandpass filter of (28).

in Fig. 3, are needed to reflect the output current from the
auxiliary filter as the current sources, labeledand , in the
main filter. Comparing the analysis here to that in [14], we note
that the choices pF, and
yield the filter proposed there. This first- order case shows how
the flexibility in the design parameters may be exploited to sim-
plify the state equation for the main filter, how the relations in
(13) yield log domain nodal equations, and how translinear ideas
may be used to realize the final filter.

C. The General Case

Having considered a simple example, we are now in position
to state the general log domain filter equations associated with
the class of syllabic-companding filters we propose. The substi-
tution of the relations in (13) or (19) into (10) and (11) yields

Main Filter

Auxiliary Filter

(22)

where subscripts and denote individual elements of the re-
spective vectors or matrix in (11). The various currents in (22)
are given by

(23)

Note the translinear terms on the right-hand side of the differ-
ential equations as before. Also note that the scaling idea, using
the scale factor , has been incorporated into the writing of the
auxiliary filter equation in (22). As in the first-order case above,
this can be exploited to reduce complexity in the final design, at
the expense of producing a scaled output from the auxil-
iary filter. In practice, it would be prudent for the translated state
equations in (11) to have been simplified by the use of the flex-
ible parameters so that only a minimum number of terms appear
on the right-hand side of the main filter differential equations.

Synthesis of the general filter equations in (22) is analogous
to that for the first-order case. To demonstrate this, we will now
consider a second-order example. Suppose we wish to synthe-
size a bandpass filter characterized by the following dynamical
equations:

(24a)

(24b)
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Fig. 5. Final circuit realization of the bandpass filter of (28) based on the simplified diagram of Fig. 5(I = I ).

where a dot over a variable indicates time differentiation. The
bandpass transfer function corresponding to (24) is given
by

(25)

It is a simple matter to show that the maximum gains from the
input to the individual state variables are given approximately
by . Thus, let us define which,
using (12) and (24), results in the following:

(26)

Clearly, by choosing we can easily eliminate one of
the entries of , thereby simplifying the final filter. Adopting
this assumption and writing (22) for the special case of the band-
pass filter of (24) yields

Main Filter

Auxiliary Filter

(27)

These equations form the basis for a companding log domain
filter realization of the bandpass filter. Each of the differen-
tial equations represents a nodal equation which can be realized
using the ideas above regarding the translinear terms. In order
to make this realization economical, we have setequal to ,
which allows the level shifter used to implement the translinear
term in the auxiliary filter to also be used to implement both of
the corresponding translinear terms—that is, the terms involving
the product —in the main filter. To achieve this, notice that
we have grouped terms involving this product carefully.

Using the notation of Figs. 1 and 2, we obtain the filter re-
alization of Fig. 4 directly from (27). Fig. 4 is, of course, not
a final circuit, since the level-shifting diodes require additional
circuitry to force the indicated currents. Using the circuits pro-
posed elsewhere [20], we may offer a complete circuit realiza-
tion as shown in Fig. 5. Here an extra diode drop level shift has
been added to all of the system-variable node voltages to allow
for the biasing circuitry associated with the negative transcon-
ductors. These diode drops are completely analogous to the bat-
teries labeled in Figs. 1 and 2 and are set up by the current
sources labeled in Fig. 5. However, because the diode drop
in the negative transconductor is used effectively asin de-
veloping the bias for the output transistor for the main filter, it
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Fig. 6. (a) Input with a changing envelope and correspondingU . (b) Output transistor current in the filter with a constant bias. (c) Output transistor current in
the filter with dynamic bias and the bias current�U . (d) Output of the filter.

is necessary to set in Fig. 5. A description of some of
the subcircuits used in Fig. 5 is given in [20].

IV. SIMULATION RESULTS AND DISCUSSION

Having given the theory and many details of the design of
syllabic-companding filters we are proposing, we wish to finish
our presentation with simulation results that show the perfor-
mance of these filters. The circuit of Fig. 3 is used for this pur-
pose. Because the main reason for the use of these filters, as
opposed to noncompanding filters, is to improve the SNR, we
focus only on this aspect of performance in this paper. The sim-
ulation of noise in companding filters is not a trivial matter,
however, as has been pointed out in the literature [21]–[23].
Therefore, a large-signal approach—that is, based on transient
analysis—was used to investigate the noise properties of the
first-order dynamically biased log domain filter. Substantially
ideal transistor models were used for each device throughout the
circuit, and transistor current sources and mirrors were used for
the indicated biasing. The effects of transistor nonidealities have
not been investigated in this theoretical study, which is devoted
primarily to the principles of the proposed ideas. The collector
shot noise of each transistor was modeled using a gaussian dis-
tributed current source from its collector to its emitter. The rms
value of this source was made proportional to the square root of
the instantaneous collector current. Noiseless and noisy versions
of the circuit of Fig. 3 were simulated, using uncorrelated noise
sources for each transistor in the noisy case. The output noise
was then found by subtracting the two results. The spectral den-
sity of the noise was determined by averaging the square of the
magnitude of the Fourier transform of the noise taken over 25
runs. Numerically integrating this power spectral density over
frequency yields the mean squared value of output noise.

The first job in specifying the dynamically biased filter of
Fig. 3 is that of parameter selection. We chose

pF and the dc gain of the filter—that is, in (15) and
(21)—equal to 1. In order to establish a cutoff frequency of 100
kHz for the main filter, was set equal to 1.61A. In an attempt
to choose an auxiliary filter cutoff frequency that might make it
useful in the envelope filtering operation, the cutoff frequency

was set to 10 kHz, yielding A. In
order to maintain the constraint that in (16), was set
equal to 1.11. Note that, due to this fractional choice for, it
would be somewhat inconvenient in practice to implement the
necessary current mirror taking the output of the auxiliary filter
into the current source, labeled , at the front end of the main
filter. This highlights the difficulty of using the auxiliary filter
for envelope filtering if small values of capacitance are to be
maintained.

Fig. 6 illustrates the principal features of a dynamically bi-
ased filter versus a filter with constant bias. Identical inputs
[Fig. 6(a)] with varying envelopes were fed into the dynamically
biased filter specified above, and a copy of this filter with a con-
stant bias , both of which have the same transfer function.
Thetotal current in the output transistor of the filter with a con-
stant bias is shown in Fig. 6(b) and that in the output transistor
of a filter with dynamic biasing is shown in Fig. 6(c). Fig. 6(d)
shows the output, which is the same for the two filters by de-
sign. For small input amplitudes, the reduction in gain from the
internal points to the output in a dynamically biased filter as
well as the reduced noise from the output transistor itself can be
imagined by comparing Fig.. 6(b) and (c). This is because the
transconductance of the output transistor is proportional to the
output current, and this transconductance plays a major role in
determining the noise gain from internal nodes to the output.

For the transient noise simulation of the companding filter,
the input of the main filter was a sinusoidal current at the
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Fig. 7. Output noise PSD of the dynamically biased filter with input amplitude
as a parameter: solid line—from transient analysis, dashed line—from ac
analysis.

cutoff frequency of 100 kHz, having a constant amplitude. The
auxiliary filter input was a constant current with a value
of 1.1 times the amplitude of , mimicking the output of a
level detector with a long averaging time compared to the signal
frequency. This ensured a 10% safety margin in the collector
current swings, which would maintain good bandwidth of the
various transistors in practice. The noise spectral density was
determined as described above, and this process was repeated
for various input amplitudes in the range 10 nA–1 mA. The
noise power spectral density (PSD) for the various input levels is
shown in Fig. 7. The variation of noise with signal (due to a cor-
responding change in the bias current) can be seen. Also shown
in the figure are the results from small signal noise simulation
using the standard “ac” analysis in conjunction with the varying
input , applied to the auxiliary filter. Due to the class-A op-
eration of the filter, the results are fairly close to those obtained
from large-signal simulation. Fig. 8 shows the integrated (from
0 to 2.5 MHz) noise versus input amplitude.

Finally, Fig. 9 shows the SNR as a function of the input am-
plitude, computed using the results shown in Fig. 8. For large
input currents, the SNR nearly saturates at 60 dB, while for
small input currents, the SNR increases by 0.5 dB for every
1 dB increase in the input. This is a departure from conven-
tional class-A linear filters whose SNR increases by 1 dB for
every 1 dB increase in the input, until clipping occurs. How-
ever, in a conventional class-A filter, the SNR will always be
worse than that observed here. For comparison purposes, Fig. 9
also shows the SNR of a fixed bias version of the dynamically
biased filter, using a sufficiently large bias to accommodate the
largest signals applied. This comparison clearly shows the ad-
vantage of companding systems over noncompanding systems.
We also note that simulations on a second order dynamically bi-
ased filter show the same benefits of companding operation.

The explanation for the noise behavior of the companding
filter is illuminating. At small input levels the noise of the dy-
namically biased filter is dominated by the noise of the log-
ging and exponentiating circuitry, since the core filter circuitry

Fig. 8. Integrated output noise versus input amplitude in the dynamically
biased filter.

Fig. 9. SNR versus input amplitude in the dynamically biased filter.

is running at considerably higher bias levels. The square root
dependence of shot noise on signal level, therefore, explains the
0.5-dB increase in SNR for each 1 dB increase in input level.
When the input signal levels are large, the core filter circuitry
runs at lower bias than the logging and exponentiating circuitry,
making the core circuitry the dominant noise source. Since the
dynamically biased filter maintains essentially constant levels
in the core filter, the SNR remains constant when the core filter
noise dominates at large input levels.

V. CONCLUSION

This paper has presented a complete theory for the design
of companding log domain filters, where variations in the bias
currents are used to achieve the companding operation. It was
shown how translational mappings on the state equations can
be used to generate system equations whose internal variables
are guaranteed to be positive, which is useful in the design of
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any log domain filter. Then a systematic application of the tech-
niques described elsewhere in the literature was used to gen-
erate nodal equations for arbitrary companding log domain fil-
ters involving translinear terms. It was then shown how these
translinear terms could be implemented in an economical way,
leading to two generic circuit topologies as special cases. Fi-
nally, the noise performance of a first order dynamically biased
log domain filter was investigated via a carefully executed large
signal simulation technique. The simulation results show clearly
the advantage of using our filters in cases where SNR is an im-
portant design constraint.
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