Dynamically Biased 1 MHz Low-pass Filter with 61 dB peak SNR and 112 dB Input Range

Nagendra Krishnapura1 and Yannis Tsividis2

1 Celight Inc., Springfield, NJ, 07081, USA.
2 Columbia University, New York, NY, 10027, USA.
Motivation

- Dynamically biased current mode filter:
 - 112 dB input range (THD < -40 dB).
 - Quiescent power consumption of 575 μW.
Outline

- Principle of distortionless dynamic biasing.
- Third-order Butterworth filter.
- Measurement results.
- Comparison.
- Conclusions.
First order log-domain filter

\[I_{o+}(s) = \frac{I_{g}/I_{tune}}{1 + sC_1V_t/I_{tune}} \]

[Punzenberger & Enz '97]

- Linear from \(i_{i+} \) to \(i_{o+} \)
- Output noise \(\sim I_{bias} + kI_{bias}^2 \); Power diss. \(\sim I_{bias} \).
- \(I_{bias} \downarrow \Rightarrow \) Output noise \(\downarrow \) & Power dissipation \(\downarrow \).
- But, filtered \(I_{bias}(t) \) appears at the output.
Pseudo-differential operation

\[I_{in} \rightarrow h(t) \rightarrow i_{o+} \quad i_{o-} \rightarrow -i_{in} \]

\[i_{o+} = (i_{in} + I_{bias}(t)) \cdot h(t) \quad \quad i_{o-} = (-i_{in} + I_{bias}(t)) \cdot h(t) \]

\[i_{out} = i_{o+} - i_{o-} = 2i_{in} \cdot h(t) \]

- Large signal linearity \(\Rightarrow \) cancellation of \(I_{bias} \).
Dynamic biasing

- Decrease I_{bias} for small input amplitudes.
- SNR improvement for small signals while maintaining linearity and time-invariance.
- Output noise depends on total input signal.
Third-order Butterworth filter

\[
\frac{1}{1 + \frac{s}{\omega_p}} + \frac{1}{1 + \frac{s}{2\omega_p}} + \frac{1}{1 + \frac{s}{\omega_p}}
\]

\[i_{out} = i_{o+} - i_{o-}\]
Minimizing distortion due to Early effect

- Large g_m for I_{fb} to reduce distortion due to Early effect.
- C_c: pole-zero compensation.
Feedback paths in the filter

Separate emitter follower for the feedback path ensures frequency response integrity.
Chip photograph

- Capacitor (0.19 mm²)
- Active circuit
- 0.52 mm²
Measurement conditions

- $V_{dd} = 2.5$ V.
- $I_{tune} = 5 \mu$A.
- I_{bias}: 3 μA to 2.5 mA.
- “Dynamic” bias: $I_{bias} = 2 \times$ the single-ended input peak, subject to a minimum of 3 μA.
- 400 kHz input for THD measurements.
- 1 MHz \pm 20 kHz inputs for IM_3 measurements.
Measured results: Frequency response

- Frequency response with I_{bias} from 3 μA to 2.5 mA
- Signal frequency response
- Bias leakage
- Passband detail

Graph showing dB vs. frequency (f/MHz) with multiple traces for different bias currents.
Measured results: Noise

- Noise floor: $4.4 \, \text{nA}_{\text{rms}}$
- Differential rms noise (0–2MHz)
Measured results: Distortion

Input range = 112 dB

S / N

S / THD

S / IM₃

6.2 nA pk

2.5 mA pk

differential peak input / A

dB
Output with dynamically changing bias

- 20µA single-ended peak input @ 600 kHz.
- I_{bias} switched from 24µA to 114µA.
- Barely perceptible change in the output.
Measured results: Power consumption

- Differential input peak: 575 µW
- Power consumption: 2.5 mW

Current consumption / A

Power consumption / mW

Graph showing the relationship between differential input peak and power consumption.
<table>
<thead>
<tr>
<th>Summary</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology</td>
<td>0.25µm BiCMOS</td>
</tr>
<tr>
<td>Area (excl. pads)</td>
<td>0.52 mm²</td>
</tr>
<tr>
<td>Supply voltage</td>
<td>2.5 V</td>
</tr>
<tr>
<td>-3 dB BW</td>
<td>930 kHz</td>
</tr>
<tr>
<td>I_{bias}</td>
<td>$3\mu A$</td>
</tr>
<tr>
<td>Power diss. (P_d)</td>
<td>575µW</td>
</tr>
<tr>
<td>Output noise</td>
<td>4.4 nA</td>
</tr>
<tr>
<td>THD (input peak = 0.5I_{bias})</td>
<td>-64.3 dB</td>
</tr>
<tr>
<td>IM₃ (input peak = 0.5I_{bias})</td>
<td>-39.5 dB</td>
</tr>
<tr>
<td>Input range (THD ≤ 40 dB)</td>
<td>112 dB</td>
</tr>
<tr>
<td>Maximum $P_d / \text{Order} \cdot \text{BW}$</td>
<td>9.35 nJ</td>
</tr>
</tbody>
</table>
Comparison

Previously published filters

This work

Input range [dB]

Normalized power dissipation / J

first-order passive RC low-pass
Conclusions

- A technique for dynamic biasing without disturbing the output.
- Noise and power reduction for small input signals.
- A log-domain filter with 112 dB input range in a 0.25 µm BiCMOS technology.
- Quiescent power: $40 \times$ smaller than maximum.
- Over an order of magnitude improvement in power efficiency of analog filters.