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ABSTRACT

In this paper, two possible switched capacitor im-
plementations of companding �lters are discussed.
The governing di�erence equations, an estimate
of the increase in the dynamic range for a given
power consumption and possible topologies are
given.

1. INTRODUCTION

Recently, companding is being investigated as a means
of increasing the dynamic range of analog �lters, with-
out incurring a proportionate increase in their power con-
sumption. Until now, the focus of research has been on
log-domain �lters (in bipolar and subthreshold CMOS).
We investigate two possible ways of achieving compand-
ing with switched capacitor (SC) circuits.

Before proceeding with the analysis, we examine
the �lters shown in Fig. 1(a). The input block of Fil-
ter 2 in Fig. 1(a) is an ampli�er of gain k > 1. The
transfer functions of the two �lters are identical. Assume
for the moment that the ampli�er and the attenuator are
noiseless and not limited in their swings, and only the �l-
ter embedded between them has a limited dynamic range
of DRdB (where dynamic range is de�ned as the ratio
of maximum output signal power Pmax to the minimum
output signal power Pmin, the latter being assumed to be
equal to the output noise power of the �lter in absence of
any signal). Then, both the �lters have a dynamic range
of DRdB, but shifted in the absolute level of the signal as
shown in Fig. 1(b). It can be seen that with the input am-
pli�er and the output attenuator, the �lter performs bet-
ter at small signal levels, but cannot handle large signals.
In a sense, we have one �lter suitable for small signals
and another for large signals, but neither �lter can handle
both. If it is possible to switch between the two \modes"
without distorting the signal, the apparent dynamic range
of the resulting �lter will beDR+20 log(k) dB (an increase
of k2 in the power ratio Pmax=Pmin). Further, if this in-
crease in dynamic range can be achieved without increas-
ing the power consumption or the total capacitance by
k2 (an increase that would be required in a conventional
linear �lter|see [1]), this approach would have an advan-
tage over a conventional linear �lter. We also observe that
a scaling of the input or the output by a constant factor
does not alter the dynamic range as long as the \scaling
blocks" are not excessively noisy.

Continuous time log-domain realizations can be
found in [2, 3, 4]. The \analog oating point technique"
is described in [5]. The general design of discrete-time
companding processors is given in [6].

The following sections deal with the equations and
the circuit realizations for companding in a switched ca-

pacitor �lter, and the increase in the dynamic range over
a linear �lter for a �xed power consumption. A �rst order
�lter is taken as an example and two di�erent approaches
are discussed.

2. TIME VARYING TRANSFORMATION OF
A DISCRETE TIME ACCUMULATOR

Consider the prototype lossy accumulator shown in Fig. 2.
This circuit can be described in terms of its state variable
x as:

x[n+ 1] =
B

B + F
x[n]�

A

B + F
u[n + 1] (1)

y[n] = Cx[n] (2)

where u is the input voltage and y is the output
charge (dumped on the next accumulator). In a practical
circuit, large inputs cause x to exceed a maximum allow-
able value Vmax, saturating the circuit. We seek to derive
a modi�ed circuit whose state variable, which we denote
by w, does not su�er from this problem, but still maintains
the same input-output characteristic as the prototype in
Fig. 2. Let the mapping from x to w be of the form
w[n] = g[n]x[n], where g[n] is an appropriate sequence[6]
to be de�ned below. Using this in (1){(2) we obtain:

w[n+ 1] =
B

B + F
w[n]�

A

B + F
g[n+ 1]u[n + 1]

+
g[n+ 1]� g[n]

g[n]

B

B + F
w[n] (3)

y[n] =
C

g[n]
w[n] (4)

The �rst two terms on the right hand side (RHS) of (3)
and the RHS of (4) \resemble" (1) and (2), with extra
terms indicating an input scaling factor of g[n + 1] and
an output scaling factor of 1=g[n]. The last term of (3)
compensates for the distortion when g changes, so that
the input-output behavior of (3){(4) is the same as that
of (1){(2).

A possible x to w mapping is shown in Fig. 3.
It can be seen that, for inputs that would have caused
x in the prototype to exceed Vmax, w remains properly
bounded. The resultant circuit operates according to the
\analog oating point" principle described in [5].

Let us consider an example where x in the proto-
type increases monotonically, starting from zero. In the
companding �lter g is initially unity and w follows x. How-
ever, when w tries to exceed Vmax, its value is reset to
0:5Vmax, by decreasing the value of g by a factor of 2.
This happens again and again as x increases further, as
seen in Fig. 3. The values of the slopes that would be en-
countered in this case would be 1, 1/2, 1/4 etc. If now x
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is imagined to decrease starting from large values, the op-
posite behavior is observed. When w reduces to 0:5Vmax,
the gain at the input g is increased by a factor of 2, raising
w to Vmax, as can be deduced from Fig. 3. The example
in Fig. 3 uses four values of g (f1, 1/2, 1/4, 1/8g).

A circuit realizing the companding lossy accumula-
tor described above is shown in Fig. 4. In order to detect
the crossings of the preset levels Vmax and Vmax=2, com-
parators are employed. Their outputs drive logic circuitry
used to set the value of g. In Fig. 4, the output of the op-
amp changes in �2 and is held constant in �1. Therefore,
the comparison is done in �1 and the circuit prepared ap-
propriately for the next �2. The scaling of the input and
the output is achieved by changing the values of the in-
put capacitor or the output capacitor (input capacitance
of the next stage). An array of capacitors is used and the
appropriate one switched in.

The last term in (3) vanishes when g[n+1] = g[n].
Under that condition, the circuit behaves as a linear ac-
cumulator shown in Fig. 2, with an input capacitance of
g[n+ 1]A and and output capacitance of C=g[n].

When g is unchanged, the coe�cient of w[n] on the
RHS of (3) is B=(B+F ). When g changes, the coe�cient
of w[n] is either 2B=(B + F ) or 0:5B=(B + F ) depending
on whether g[n + 1] = 2g[n] or g[n + 1] = 0:5g[n]. The
former implies a doubling of the state variable (the voltage
on the capacitor B) and the latter implies reduction by a
factor of two.

The state variable can be doubled by having an-
other capacitor of value B which is charged to w in every
cycle and dumping its charge on the feedback capacitor B
in the integration phase when a doubling is required [5].

The state variable can be halved as follows: The
integrating capacitor B is split into two capacitors B=2
each (B1, B2 in Fig. 4). For normal operation, the two
are placed in parallel and function as the integrating ca-
pacitor. Another capacitor B3 of value B=2 is discharged
in every cycle. When w needs to be halved, B2 is discon-
nected and B3 is connected across B1. This halves the
voltage across B1, and leaves a total feedback capacitor
of value B, as required by the left hand side of (3). Each
time w is halved, B2 and B3 interchange their roles in
order to ensure uninterrupted operation.

Fig. 4 shows the circuit schematically along with
the relevant logic signals. \Inc" and \Dec" denote logic
signals indicating an increase or decrease of g respectively.
\bo" is a bit that toggles each time g is halved, so that
B2 and B3 alternate their roles.

For small signals, the circuit operates with g = 1
and the circuit is identical to the prototype without com-
panding (Fig. 2). Therefore, the noise oor is the same
as that of the prototype �lter. From the arguments pre-
sented earlier in this section, and from Fig. 3, it can be
seen that the maximum input voltage that can be applied
to the companding �lter without saturating the op-amp is
8 times larger than the maximum signal that can be ap-
plied to the �lter in Fig. 2. Consequently, the companding
�lter has a dynamic range which is 20 log(8) dB (a factor of
64) larger than that of the prototype �lter. However, the
input voltage cannot be allowed to exceed Vmax; to main-
tain the advantages mentioned in view of this, one can use
smaller input voltages and larger input capacitance (see
below).

The e�ective load on the op-amp in Fig. 2 is

Cload1 =
(B + F )A

B + F +A
+ C (5)

and that in Fig. 4 is

Cload2 =
(B + F )Ag[n+ 1]

B + F +Ag[n+ 1]
+ C=g[n] (6)

Assuming that C dominates A, B and F , the worst case
increase in the capacitive loading from the �lter in Fig. 2
to that in Fig. 4 is max(1=g[n]) = 8. To drive this in-
creased load, the op-amp needs to be biased at a current
which is 8 times larger, and hence, the power consumption
increases by a factor of 8 (10 log(8) dB). The worst case in-
crease in the capacitance used is (C+2C+4C+8C)=C =
15. Since the dynamic range went up by a factor of
64 (20 log(8) dB), the companding �lter has a signi�cantly
larger dynamic range for a given power consumption than
a conventional linear �lter. In practical SC circuits, C
does not quite dominate A, B & F . A more precise calcu-

lation for a 6th order 0.5 dB Chebyshev �lter with a cuto�
frequency of fs=10 and four values of g as implied in Fig. 3
shows an increase in the total capacitance by a factor of
7.7. This is 8.3 times smaller than the increase in total
capacitance (a factor of 64) that would be demanded by
a conventional linear �lter[1] for the same increase in the
dynamic range. Similarly, the increase in the power con-
sumption is 8 times smaller than in a conventional linear
�lter.

The above estimates do not include the power con-
sumed by the control circuitry and the comparators, or the
increased slew-rate requirements on the op-amp due to the
\jumps" in the characteristic of Fig. 3, which in practice,
will reduce the \advantage" estimated above. By gener-
alizing the method followed in the previous paragraphs,
it can be found that the improvement in the dynamic
range per unit power consumption of a companding �l-
ter increases with the number of g values used (number of
di�erent slopes in Fig. 3). But, the spread in capacitance
values increases exponentially with the number of g val-
ues used, and the use of a very large number of g values
is impractical.

A higher order �lter can be built using the com-
panding accumulators described above. The capacitor ar-
ray at the output of one stage can be combined with the
array at the input of the following stage to form a bigger
array, which is controlled using the logic signals derived
from both the stages. The voltage levels at the output of
each op-amp will be a compressed version of the voltages
present in a conventional linear �lter. After the �nal accu-
mulator, an expander must be used to recover the \linear"
output (which is related to the input through the relevant
linear time invariant di�erence equations). This consists
of a SC ampli�er with a switchable input capacitor array.

Fig. 6 shows the time response of a 6th order 0.5 dB
Chebyshev �lter (cuto� = fs=10) to a sinusoidal input at
fs=64 obtained from SWITCAP simulation. The output
of the last op-amp and the expanded outputs are shown
for input amplitudes of 0.9V, 3V and 8V. The compressed
version (the voltage at the op-amp output) has nearly the
same swing for an input which varies by as much as 1:9.
Thus, by preventing the op-amp outputs from overloading
in presence of large inputs, companding achieves a larger
dynamic range than a conventional �lter.
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By compressing the outputs of the op-amps, input
voltages larger than those allowable in a conventional lin-
ear �lter can be applied. However, breakdown constraints
can preclude large input voltages. This situation can be
recti�ed by increasing the size of the input capacitance
and reducing the magnitude of the input voltage|a 1V
input sampled by a 1 pF capacitor is the same as a 0.25V
signal sampled by a 4 pF capacitor as far as the signal is
concerned.

3. COMPANDING ACCUMULATOR USING
A NONLINEAR BLOCK AT THE OUTPUT

Another approach to realize companding switched capac-
itor �lters would be to imitate log-domain �lters by using
a piecewise linear exponential expander at the output in
place of the bipolar transistor in a log-domain �lter. Fig. 5
shows such a curve having four segments with successive
slopes increasing by a factor of two. As in section 2., we
seek to modify the state variable description of the pro-
totype lossy accumulator given by (1){(2) to obtain the
companding accumulator. The output charge y is related
to the new state variable w through y = C(anw[n] + bn)
where an = a(w[n]) and bn = b(w[n]) are the slope and
the intercept of the characteristic shown in Fig. 5. Using
this in (1){(2) and rearranging, we get:

w[n+ 1] =
B

B + F
w[n] �

A

B + F

u[n+ 1]

an+1

B

B + F

(an � an+1)w[n] + bn � bn+1
an+1

(7)

y[n] = C(anw[n] + bn) (8)

(7) describes a lossy accumulator with gain switch-
ing (u[n+ 1]=an+1) along with a term which compensates
for changes in an, bn. This circuit can be implemented
along lines similar to that described in section 2. The de-
tails are not given due to lack of space.

For very small signals, the circuit operates in the
�rst segment of Fig. 5 (slope=1). Therefore, the output
noise is the same as that in a conventional linear �lter.
From Fig. 5, it can be seen that the maximum output
charge is 3.75 ((24 � 1)=4) times the maximum output
charge in a conventional linear �lter. Therefore, the dy-
namic range increases by 20 log(3:75) dB.

By following steps similar to those in section 2., it
can be found that the worst case capacitive loading in-
creases by a factor of 8 (when the circuit is operating on
the last segment of Fig. 5). The maximum output charge
increases by a factor of 3:75. Therefore, the op-amp needs
to be biased at a correspondingly larger current, leading
to a 3.75 times increase in the power dissipation. The in-
crease in the dynamic range is more than the increase in
the power consumption and hence, the circuit is advanta-
geous over a linear �lter.

The increase in the dynamic range for a �xed power
consumption is smaller for this circuit than for that de-
scribed in section 2. So, the latter is better in terms of
improvement in the dynamic range.

From Fig. 3 and the description in section 2., it is
clear that the output voltage of the op-amp in Fig. 4 jumps
by Vmax=2 each time g changes, whereas the characteristic
described by Fig. 5 is continuous and the jumps at the
output of the op-amp are generally smaller. This implies
that the circuit described in this section has less stringent
slew-rate requirements than that in section 2.
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Figure 1. Two �lters with skewed operating
ranges.

4. CONCLUSION

This article discusses two possible methods for realizing
switched capacitor companding circuits and their advan-
tages over conventional linear �lters.

5. ACKNOWLEDGMENTS

The authors thank M. Tarsia for interesting discussions.

REFERENCES

[1] E. Vittoz, \Low power low-voltage limitations and
prospects in analog design", in R. J. v. d. Plassche,
W. M. C. Sansen and J. H. Huijsing, eds., Analog
Circuit Design, Low-Power, Low-Voltage, Integrated
Filters and Smart-Power, Boston: Kluwer, 1995.

[2] E. Seevinck, \Companding current{mode integrator:
A new circuit principle for continuous time mono-
lithic �lters", Electronics Letters, vol. 26, pp. 2046{
2047, Nov. 1990.

[3] D. Frey, \Log{Domain Filtering: An Approach to
Current Mode Filtering", IEE Proc. G, vol. 140, pp.
406{416, Dec. 1993.

[4] M. Punzenberger, C. C. Enz, \A 1.2V Class AB log{
domain �lter", Digest 1997 IEEE ISSCC, pp. 56{57,
Feb. 1997.

[5] E. Blumenkrantz, \The Analog Floating Point Tech-
nique", Proc. 1995 IEEE Symp. of Low Power Elec-
tronics, San Hose, CA, Oct. 1995, pp. 72{73.

[6] Y.P. Tsividis, \Externally Linear Time{Invariant
Systems and Their Application to Companding Sig-
nal Processors", IEEE TCAS{II, vol. 44, pp. 65{85,
Feb. 1997.

0-7803-4455-3/98/$10.00 (c) 1998 IEEE



y = Cx

op-amp
to nexty

C

-

u

x +

F

B
A

φ1

φ2

φ1φ1

φ2φ2

φ1φ1

φ2φ2

+
−

Figure 2. Lossy accumulator without companding.

−8 −6 −4 −2 0 2 4 6 8
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x / Vmax

w
 / 

V
m

ax

Figure 3. Mapping from x to w.

y

op-amp
to next

8C

C

A/8

A/4

A/2

A

B1

SIGNALS
CONTROL 

CO
NT
RO
L 
LO
GI
C

AN
D

CO
MP
AR
AT
OR
S

B2

B3

.(bo.Dec + bo’.Dec’)(bo.Dec + bo’.Dec’).

.(bo’.Dec + bo.Dec’)(bo’.Dec + bo.Dec’).

.bo’bo’.

bo. bo.

Inc.

Inc.

B/2

B/2

B

-

u

w +

F

B/2

φ1

φ2

φ1φ1

φ2

φ1

φ2

φ1

φ1

φ1

φ1

φ2φ2

φ2

φ1

φ2

φ1

φ2

φ1

φ1φ1

φ1

φ1

φ2

+
−

Figure 4. Lossy accumulator with companding.
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Figure 6. Waveforms in a SC Chebyshev �lter
with companding. Top trace: 0.9 V input, middle
trace: 3 V input, bottom trace: 8 V input.
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