A Baseband Pulse Shaping Filter for Gaussian Minimum Shift Keying

N. Krishnapura¹, S. Pavan², C. Mathiazhagan³, B. Ramamurthi³

¹ Dept. of EE, Columbia University, New York, USA.
² Texas Instruments, Edison, New Jersey, USA.
³ Dept. of EE, Indian Institute of Technology, Chennai, India.

Motivation

- Rectangular bit stream has a large amount of energy at high frequencies.
- Pulse shaping limits the out of band radiation in communication systems.
- Digital pulse shaping harder with high bit rates.
- Analog pulse shaping \rightarrow lower power and area?

- h(): gaussian impulse response.
- b(): rectangular pulse train.
- p(): smoothed (gaussian filtered) pulse train.

Pulse shaping

$$h(t) = B_{1}\sqrt{\frac{2\pi}{\ln(2)}} \exp\left(-\frac{2\pi^{2}B^{2}t^{2}}{\ln(2)}\right)$$

- h(): Non-causal and infinitely long. Truncated and shifted in practice.
- *B*: -3dB bandwidth of the gaussian filter.
- Pulse shape characterized by " BT_b " product. T_b is the bit period.
- Pulse width increases as " BT_b " decreases higher truncation length.

Digital pulse shaping

- Store the values of the oversampled pulse shape(unit step response) in a ROM.
- Read out into a DAC.
- Filter the staircase waveform using a continuous-time filter.

Digital pulse shaping

- DAC:
 - * 6 7 bits.
 - * Power hungry for large sampling rates.
- ROM
 - * 6 7 bits x Oversampling ratio x N.
 - * $N = 2^{(no. of bit periods in the unit step response)}$.
- Smoothing filter:
 - * Linear phase in order not to distort the pulse shape.
 - * Trivial for low bit rate / high oversampling rate (e.g. 1st order RC).
 - * High order for small oversampling rates (e.g.: 6th order for OSR=6).
 - * Tuning may be required.
 - * Cutoff frequency > B, where B is the bandwidth of the pulse shape.

Analog pulse shaping?

Direct implementation of the convolution

 $p(t) = h(t) \otimes b(t)$

using a filter with an impulse response h()

- How to obtain a gaussian impulse response?
 - * A cascade of a large number of filters with positive impulse responses has a gaussian impulse response. ("Central Limit Theorem").
 - * Gaussian magnitude response + linear phase \rightarrow gaussian impulse response.
 - * Bessel filter: optimized for linear phase.
 - :. Use a high order Bessel filter!

Analog pulse shaping

- The central limit theorem
 - * $X_1, X_2, ..., X_n$: i.i.d random variables $\Rightarrow X_1 + X_2 + ... + X_n$ has a gaussian probability density function if n is very large.
 - * e.g. $\{X_i\}$: uniformly distributed.

Response of a cascade of 8 buffered 1st order RC sections

Feasibility

- 8th order Bessel filter: the response is a good approximation to a gaussian.
- Satisfies the DECT spectral requirements.

Comparison

Digital shaping

- With high bit rates, smoothing filter is quite complicated.
- Tuning may be necessary for the smoothing filter.
- Cutoff frequency of the smoothing filter > pulse shaping bandwidth.
- + At low bit rates, the smoothing filter is simple.
- + Easily adaptable to I/Q modulators.

Analog shaping

- + For high data rates, just about as complicated as the smoothing filter in the digital method.
- + Smaller cutoff frequency than the smoothing filter.
- + Eliminates the DAC and the ROM \rightarrow lesser power, area.
- Requires bandwidth tuning.
- Only for direct VCO modulation.

Pulse shaping filter with automatic tuning

Pulse shaping filter:

- B=576 kHz,1/T_b = 1.152 Mb/s (DECT: BT_b = 0.5)

- Master filter tuned to 2 MHz slave tuned by matching.
- Bessel filter : low Q factors \rightarrow no Q tuning.
- Slave frequencies, Q factors are determined by reference frequency • and capacitor ratios. 11

Sallen-Key Biquad

- Low Q values \rightarrow low sensitivity.
- Simplicity.
- Resistors: nMOS in triode region.
- Pseudo differential structure to eliminate even-order distortion.

- Cascoded differential pair in unity feedback.
- Quiescent near ground for maximum tunability.

Measured Characteristics

Step response

Response to a short pulse

Measured Characteristics

Technology Supply voltage Chip area (without pads) Capacitance Reference	2µm n-well CMOS 3.3 V 2.3 mm ² 73.7 pF 2 MHz, sinusoidal
Power consumption	9.2 ± 0.24 mW
Dc gain	-0.27 ± 0.05 dB
Dc offset(differential)	15 ± 9.8 mV
f _{-3dB} , nom	577 ± 9.7 kHz
Output noise (50kHz - 5 MHz)	$409 \pm 5.7 \ \mu V$
Ref. feedthrough	-70.6 ± 0.32 dB
V _{ipp,max} (THD < 40 dB) [50 kHz tone]	1.63 ± 0.06 V
S / (N+D) when THD=N [50 kHz tone]	52.8 ± 0.38 dB
V _{ipp,max} (THD < 40 dB) [576 kHz tone]	0.56 ± 0.04 V
S / (N+D) when THD=N [576 kHz tone]	46.1 ± 0.48 dB

Chip photograph 2.2mm phase detector comparator 1.45mm 124 143 bias 8th order 2nd order slave master 15

Conclusions

- A method for analog gaussian pulse shaping is proposed.
- Power and area savings over the existing method for high bit rates.
- Simulations demonstrate that DECT spectral specifications are satisfied.
- Pulse shaping chip with automatic tuning is fabricated.
- Measurement results are given.