Synthesis Based Introduction to Opamps and Phase Locked Loops 2012 International Symposium on Circuits and Systems Seoul, Korea

Nagendra Krishnapura

Department of Electrical Engineering Indian Institute of Technology, Madras Chennai, 600036, India

23 May 2012

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Outline

- Negative feedback amplifier
 - Integrate the error to drive the output
- Opamp to compute and integrate the error
 - *G_m* loaded by a capacitor—Single stage opamp
 - Better I-V conversion—Two stage opamp
 - Further refinement—Three stage opamp
- PLL as negative feedback frequency multiplier
 - Integrate frequency error to drive the output—Type I PLL

(日) (日) (日) (日) (日) (日) (日)

- Static phase error causes reference spurs
- Additional integrator to null phase error—Type II PLL
- Conclusions

Negative feedback system

 Controller: Continuously changes the input until error goes to zero

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Negative feedback system

 Controller: Continuously changes the input until error goes to zero

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Negative feedback amplifier

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

- Integrate the error $V_i V_o/k$ to drive the output
- Opamp computes the error and integrates it

Opamp (integrator) realization

- $G_m C$ integrator
- Finite *R*₀₁ ⇒ Finite dc gain ⇒ Steady state error

Transimpedance amplifier for better I-V conversion

- Use negative feedback to realize a CCVS
- $V_o \approx I_{Gm}Z_c$ within the unity loop gain frequency

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Improved I-V conversion—Two stage opamp

Intuition about two stage opamp

I-V conversion bandwidth \approx unity loop gain frequency

 $\omega_{u,desired} < \omega_{u,inner}$

$$\frac{G_{m1}}{C} < \frac{G_{m2}}{C_2}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

Further improvement—Three stage opamp

900

Intuition about three stage opamp

I-V conversion bandwidth \approx unity loop gain frequency

 $\omega_{u,desired} < \omega_{u,inner}$

$$\frac{G_{m1}}{C} < \frac{G_{m2}}{C_2} < \frac{G_{m3}}{C_3}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

Analysis of two and three stage opamps

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

- Two stage opamp
 - DC gain
 - · Pole locations, pole splitting
 - Stability constraints
 - RHP zero and its cancellation
- Three stage opamp
 - DC gain
 - Pole locations
 - Stability constraints
 - Zero pair and their optimization

Frequency multiplication analogous to voltage amplification

Frequency multiplication

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

Integrate frequency difference \Rightarrow *Phase difference*

◆ロト ◆課 ▶ ◆語 ▶ ◆語 ▶ ○ 語 ● の Q @

Type I phase locked loop

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

Phase detector and VCO in a loop

Type I phase locked loop

• Phase offset $\Delta \Phi = (f_{out} - f_{free})/K_{vco}K_{pd}$ between input and feedback signals

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

- $|\Delta \Phi|$ limited to $\pm n\pi$ due to periodic nature of phase
- Limited lock range $|f_{out} f_{free}|$

Tri state phase detector example

Type I PLL with a practical phase detector

- Output average value $\propto \Delta \Phi$
- Periodic signal at fref
- Periodic signal magnitude proportional to $\Delta \Phi$
- VCO modulated at fref and its harmonics
- PLL output has sidebands at integer multiples of fref

◆□ ▶ ◆◎ ▶ ◆ ■ ▶ ▲ ■ ◆ ● ◆ ●

For a modest sideband level of -40 dB, PLL lock range $\approx 10^{-4} f_{ref}$. Cannot change *N* at all!

Type I phase locked loop

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Changing the free running frequency of a VCO

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

 Add a bias to the input to change the free running frequency

Slowly change the bias until $\Delta \phi = \mathbf{0}$

(日)

(日)
(日)

(日)
(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)
</p

• Slowly change the bias V_{off} until $\Delta \phi = 0$

Slowly change the bias until $\Delta \phi = 0$

・ ロ ・ ・ 原 ・ ・ 目 ・ ・ 日 ・

Measure Δφ and integrate it to control V_{off}

Type II Phase locked loop

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Proportional + integral loop filter

Type II Phase locked loop implementation

Intuition about the Phase locked loop

- Reason for using a phase detector for frequency synthesis
- Reason for an additional integrator in the loop filter
- Integral path for adjusting V_{off} slower than the main path (type I)
 - PLL bandwidth (unity loop gain frequency) is the same as in the type I loop
 - Presence of a zero before the PLL bandwidth (unity loop gain frequency)
 - Integral path influences the phase transfer functions only well below the PLL bandwidth

Analysis of type II Phase locked loop

- Pole zero locations
- Phase (jitter) transfer functions
- Higher order loop filter for higher spur suppression

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Suggested course outline

- Negative feedback circuits
- Stability analysis
- Opamp topologies using controlled sources (G_m)

(日)

(日)
(日)

(日)
(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)
</p

- Opamp topologies at the transistor level
- Phase locked loop at the system level

Conclusions

- Negative feedback: Continuous adjustment to reduce error
- Integrator is the key element of the negative feedback loop
- Implementing a voltage integrator and seeking to improve its performance leads to commonly used opamp topologies
- Implementing a negative feedback frequency multiplier and seeking to improve its performance leads to type I and II phase locked loops

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Valuable intuition gained before embarking on analysis

References

Paul R. Gray, Paul J. Hurst, Stephen H. Lewis, Robert G. Meyer, Analysis and Design of Analog Integrated Circuits, 5th ed., Wiley 2009. R. D. Middlebrook, "Methods of design-oriented analysis: Low-entropy expressions," New Approaches to Undergraduate Education IV. Santa Barbara, 26-31 July 1992. Nagendra Krishnapura, "Introducing negative feedback with an integrator as the central element." Proc. 2012 IEEE ISCAS. May 2012. Shanthi Pavan, "EC201: Analog Circuits," Available: http://www.ee.iitm.ac.in/~nagendra/videolectures Flovd M. Gardner, Phaselock Techniques, 3rd ed., Wiley-Interscience 2005, Roland Best, Phase Locked Loops: Design, Simulation and Applications, 5th ed., McGraw-Hill 2007. Stanley Goldman, Phase Locked Loop Engineering Handbook for Integrated Circuits, Artech House 2007. Behzad Razavi, Design of Analog CMOS Integrated Circuits, 1st edition, McGraw-Hill, 2000. Nagendra Krishnapura, "EE5390: Analog Integrated Circuit Design," Available: http://www.ee.iitm.ac.in/~nagendra/videolectures