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Motivation

• Intuition before full blown analysis

• Synthesis instead of ad-hoc introduction

• Time domain reasoning/analysis

• More intuitive
• Exact analysis difficult for complex systems

• Frequency domain analysis

• More abstract
• Can handle complex systems easily



Outline

• Traditional introduction to negative feedback systems

• Integrator as controller in a negative feedback system

• Intuition and analysis in the time domain

• Pedagogical advantages of the proposed introduction

• Conclusions



Traditional introduction to negative feedback systems

Σ
Vo

-+
Vi

A

β

• Algebraic system—cannot explain evolution over time

• Unstable with arbitrarily small loop delay

• Ideal delay Td in the loop ⇒ oscillations with a period 2Td

• Real systems have non-zero delay and don’t respond

instantaneously



Intuitive understanding of negative feedback systems
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(e.g. speedometer reading)

controller: change the output

until error goes to zero

sensor

• Compare the sensed output to the target (desired output)

• Continuously change the output until the output

approaches the target



Nature of the controller
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• Controller integrates the error



Negative feedback system with an integrator
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Negative feedback amplifier
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• Need the output Vo to be gain k times the input Vi

• Compare Vo/k to Vi and integrate the error

• Steady state when Vo = kVi for constant Vi



Opamp for implementing a negative feedback amplifier
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Time domain behavior with constant/step inputs
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• Time constant k/ωu
• Asymptotically reaches Vo = kVi or Vfb = Vi



Relation to frequency domain analysis

Loop gain L(s) =
ωu
ks

=
ωu,loop
s

Frequency domain:

• Unity loop gain frequency ωu,loop

• Significant negative feedback up to ωu,loop ⇒ nearly ideal

behavior up to ωu,loop (Closed loop Bandwidth)

τloop =
1

ωu,loop

Time domain:

• Unit step response of the loop gain

= t/(1/ωu,loop) = t/τloop

• Closed loop response time constant = 1/ωu,loop = τloop



Negative feedback amplifier with delay in the loop
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• Reacts to past output ⇒ Don’t know target has been

reached

• Possibility of overshoots or unbounded oscillation

• Unaffected if the integrator’s output doesn’t change

significantly over Td



Negative feedback amplifier with delay in the loop
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Delay differential equation



Negative feedback amplifier with delay in the loop
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• Td/τloop ≤ 1/e(= 0.367): No overshoot

• 1/e < Td/τloop < π/2: Overshoot + ringing

• π/2 < Td/τloop: Unstable

In practice we need a “well behaved” response (limited

overshoot)



Negative feedback amplifier with delay in the loop
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Negative feedback amplifier with delay in the loop

% Overshoot 0 1 2 4 10 20

Td/τloop ≤ 1/e 0.445 0.465 0.5 0.585 0.695

(0.367)



Fixing the stability problem in presence of delay

• Stability governed by the ratio of Td to τloop

• Reduce Td : Faster circuit/technology

• Increase τloop ⇒ Decrease ωu,loop: Slower integration



Delays in circuit implementation—parasitic poles and zeros

Loop gain L(s) =
ωu,loop
s

︸ ︷︷ ︸

Ideal

·

∏M
k=1(1 + s/zk )

∏N
k=2(1 + s/pk )

︸ ︷︷ ︸

Parasitic

Td Td

slope=ωu,loop slope=ωu,loop

tt

Unit step response of L(s) is a ramp of slope ωu,loop (same as

ideal) with a delay Td =
∑N
k=1 1/pk −

∑M
k=1 1/zk



Closed loop response with eqiuvalent delay



Advantages of this formulation

• Synthesis from common experience of negative feedback

based adjustment in the time domain

• Intuition and key results obtained from time domain
reasoning

• Exponential settling
• Possibility of ringing, overshoot, and instability



Advantages of this formulation

• Traditional viewpoint

• Memoryless amplifier (loop gain) in the ideal case
• Frequency dependence as non-ideal feature

• Proposed viewpoint

• Integrator in the ideal case (∞ dc gain)
• Finite dc gain due to non-ideal implementation

• ωu,loop more fundamental characteristic of the negative
feedback loop than dc loop gain

• Increasing ωu,loop requires higher power
• Increasing dc loop gain indirectly influences power

• Loop gain of all feedback systems has integrator-like
behavior over some frequency range

• Nyquist plot should enter the unity circle near the negative

imaginary axis
• Bode plot should have −20 dB/decade slope near the unity

gain frequency



Advantages of this formulation

• Clear why fastest negative feedback systems are slower

than fastest open loop systems

• Leads to commonly used opamp and phase locked loop

topologies



Suggested course outline

• Negative feedback with integrating controller

• Opamp for computing and integrating error

• Time domain analysis with delay

• Laplace transform stability analysis, Nyquist criteria

• Relation to time domain analysis results

• Synthesis of opamp, PLL topologies
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