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Block diagram - Continuous Time ∆Σ Modulator
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Spectrum of the ∆Σ Modulator output
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Inband

3rd order L(s) , 4 bit ADC, fs = 3.072 MHz

Inband Signal to noise ratio (SNR) = 96 dB

Decimator - Low pass filtering & downsampling
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Decimator requirements

Modulator[1] Decimation Filter

Order 3 Downsampling

Factor

64

Sampling rate 3.072 MHz Passband ripple 0.05 dB

Nyquist rate 48 kHz Passband edge 21.6 kHz

SNR 93 dB SNR 96 dB

Power 90 µW Power < 100 µW

[1] - S. Pavan, N. Krishnapura, R. Pandarinathan, and P. Sankar, "A power optimized continuous-time ∆Σ converter

for audio applications," IEEE Journal of Solid-State Circuits, vol. 43, no. 2, pp. 351 360, 2008
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Block diagram of the decimator
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SINC4 filter

SINC, H(z) - 16 tap moving average filter

SINC4, H4(z) - Cascade of 4 SINC filters

Removes quantization noise shaping

Downsampling of 16 - Hogenauer structure

H(z) =
1 − z−16

1 − z−1

H(f ) =
sin(16πf )

sin(πf )
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SINC4 - Hogenauer structure
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Retiming, Pipelining save 46% power in SINC4

Optimal Datawidth = Bin + k log2N = 20

Shankar Parameswaran, Nagendra Krishnapura EE, IITM, India



Frequency response of SINC4
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Halfband filters

FIR filters

6 dB bandwidth = fs
4

Alternate tap weights are 0

Two halfband filters downsample by 2 each

First halfband filter

Initial filtering
10th order

Second halfband filter

Sharper filtering

50th order
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Halfband filter implementation

Polyphase structure, downsampling by 2 within filter

Tap weights in Canonical Signed Digits (CSD)

Example: 0.875 = 2−1 + 2−2 + 2−3 = 20
− 2−4

(Reduces Multiplication Complexity)

Nested Multiplication, Horners rule

Example: 2−5
− 2−7 = 2−5(1 − 2−2)

(Reduces Truncation Error)

2−1 is dropping a bit in the multiplicand
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Datawidth in halfband filters
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To attenuate a portion of quantization noise floor of a q1=16 bit

signal by 48 dB in some band needs q2=24 bit in the filter.
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Frequency response of halfband filters
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Scaling block

∆Σ Modulator - Maximum Stable Amplitude (MSA=85%)

Signal swing at modulator output is MSA × fullscale

96 dB SNR at Nyquist rate only with fullscale amplitude

Scale by MSA−1 after first halfband filter

Lesser number of bits from modulator (4) and high

frequency noise prevents scaling at the initial stages of

decimator

CSD & Nested Multiplication
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Equalizer

Droop of SINC4 in the passband

Maximum passband ripple = 0.05 dB

Inverse SINC4 designed with Parks McClellan method

48th order filter

CSD & Nested Multiplication
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Frequency response of the equalizer
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Synthesis

Technology: 1.8 V standard cells UMC 0.18 µm CMOS

CAD tools

Design Synthesis - Design Compiler

Place & Route - SoC Encounter

Power Consumption - PrimePower

96.7 µW - ∆Σ modulator input is a tone at 1.6 kHz
100 µW - ∆Σ modulator input is a white noise

Active area = 0.46 mm2
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Layout of the fabricated chip
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Picture of the test board

Shankar Parameswaran, Nagendra Krishnapura EE, IITM, India



Measurement results from the chip

Chip works correctly at 1.8 V supply and works reliably

down to 0.9 V at 3.072 MHz

Current consumed with 1.8 V supply = 58 µA (104.4 µW)

Current consumed with 0.9 V supply = 26 µA
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Decimated output spectrum from the chip

0 4 8 12 16 20 24
−25

0

25

50

75

100

125

Frequency (kHz)

S
p
e
c
tr

a
l 
M

a
g
n
it
u
d
e
 (

d
B

)

Tone at 4.125 kHz

Shankar Parameswaran, Nagendra Krishnapura EE, IITM, India



Conclusion

100 µW decimator for audio ∆Σ ADC

No handcrafted circuits - completely implemented with

automated CAD tools

Works down to 0.9 V supply

50% power reduction with a linear power regulator
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