Compact lowpass ladder filters using tapped coils 2009 International Symposium on Circuits and Systems, Taipei

> Nagendra Krishnapura Varun Gupta¹ Neetin Agrawal²

Department of Electrical Engineering Indian Institute of Technology, Madras Chennai, 600036, India

¹currently at the Indian Institute of Management, Ahmedabad, India

²currently at Texas Instruments, Bangalore, India

25 May 2009

(ロ) (同) (三) (三) (三) (○) (○)

Pulse shaping filters in serial links

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ○ ○

Spiral inductors occupy large chip area

LC ladder filters for pulse shaping

Use a single spiral with multiple taps to save area

Outline

Single inductor with multiple taps versus multiple inductors

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

- Effect of coupling between inductors in a ladder filter
- Cancelling the effect of coupling
- Seventh order Bessel filter using a single spiral
- Simulation results
- Conclusions

7.5 GHz Bessel filters for 10 Gb/s data

Single spiral versus multiple spirals

▲□▶▲□▶▲□▶▲□▶ □ のQ@

The area of the single spiral is incorrectly given as 27225µm² in the paper

Coupling between adjacent inductors

$$\frac{V_o(s)}{V_s(s)} = \frac{1 - s^2 M_{24} C_3}{D_5(s)}$$

- Zeros at $\pm \sqrt{1/M_{24}C_3}$
- Undershoot
- Reduced attenuation

イロト 不得 トイヨト イヨト 三島

Coupling between alternate inductors

- A pair of zeros on the real axis
- A pair of zeros on the imaginary axis
- Undershoot, notch, reduced high frequency attenuation

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

Step response with coupling

Magnitude response with coupling

Fifth order Bessel filter

Effect of coupling on the step response

Effect of coupling on the magnitude response

Cancelling the effect of coupling between adjacent coils

Cancelling the effect of coupling between adjacent coils

- Series inductance cancels the effect of coupling
- Inductance of the tap line can suffice

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

-

7.5 GHz seventh order Bessel filter

7.5 GHz seventh order Bessel filter

extra 5um gap

- 48,300 μm²
- 56,375 μm² for separate spirals (excl. capacitors)

Simulated parameters of the multi-tap inductor

	Desired	Obtained		Desired	Obtained
L ₂	0.9992 nH	0.957 nH	k ₂₄	0.3	0.308
L_4	0.3586 nH	0.424 nH	k ₄₆	0.3	0.339
L ₆	0.1796 nH	0.187 nH	k ₂₆	0	0.160
L_{c3}	180 pH	96 pH	L_{c5}	76 pH	24 pH

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Magnitude response of the realized filter

Step response of the realized filter

Eye diagram at 10Gb/s

Eye diagram at 10Gb/s—normalized to dc gain

Conclusions

- Single spiral with multiple taps reduces layout area
- Mutual coupling results in additional zeros
- Adjacent coupling cancelled using series inductances
- 15% to 30% area savings in practice
- Also useful for conventional LC ladders and on PCB filters

(日) (日) (日) (日) (日) (日) (日)

References

A. Boulouard et al., "Wide-band GaAs MMIC low-pass filters," *Gallium Arsenide Applications Symposium*, *GAAS 1994*, 28-30 April 1994, Italy.

Hui Wu et al., "Integrated transversal equalizers in high-speed fiber-optic systems," *IEEE Journal of Solid State Circuits*, pp. 2131-2137, vol. 38, issue 12, Dec. 2003.

"Standard and Customs Bessel Filters" from *Nanowave technologies*, http://www.nanowavetech.com/prod rf components.htm

T. Ito, K. Okada, K. Masu, "Characterization of On-Chip Multi-Port Inductors for Small-Area RF Circuits", *IEEE Transactions on Circuits and Systems I: Regular Papers*, Accepted for future publication.

"Fasthenry: A multipole accelerated field solver", http://www.rle.mit.edu/cpg/research_codes.htm

