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Abstract— The nonlinearity of an element can be altered
while retaining the original operating point and first-order terms
by appropriately combining two instances of the nonlinear ele-
ment with complementary scaling factors for incremental voltages
above the operating points. Per-element distortion contributions
in a circuit can then be determined by altering the nonlinear
terms by known factors and simulating the output distortion
in each case. This technique can be used in a standard circuit
simulator with the appropriate nonlinear device models but
requires no knowledge of the device model details on the part of
the circuit designer. The technique is demonstrated by applying
it to a common source amplifier with a nonlinear load and a two
stage fully differential opamp.

I. MOTIVATION

Distortion due to nonlinearity and noise due to inherent
randomness are the most important disturbances in signal
processing circuits. Circuits must be designed such that these
are kept below certain specified levels. It would be convenient
to determine individual contributions of these disturbances
from different blocks or components to the overall output so
that the circuit can be suitably optimized. Determining noise
contributions from individual components is routinely done
in standard circuit simulators. For distortion though, no such
facility is available. The total output distortion can however
be determined easily by running a transient or periodic steady
state analysis with nonlinear device models.

To determine the distortion or noise contribution of
each device, one needs to know the equivalent nonlinear
distortion or noise source in each component, and the transfer
function from that source to the output. The difficulty in
resolving individual distortion contributions is that, unlike in
the case of noise, it is not straightforward to calculate the
equivalent distortion source at the device level. If the nonlinear
device were described by a Taylor or Volterra series in the port
variables, the nonlinear source would consist of the higher
order terms in the series. In practice, the device models are a
lot more complicated and not described in closed form.

In this paper, we present a technique that bypasses both
these steps of explicitly computing the distortion source of the
device or the transfer functions to the output. It is shown that
by running multiple simulations of the total output distortion of
a circuit with slightly changed nonlinear characteristics in the
relevant element, the contribution of the element to the output
distortion can be determined. Obtaining a device with changed
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nonlinear characteristics is based on elementary circuit theory
and requires no knowledge of the device model.

In the next section, we review previously available
techniques for determining individual distortion contributions.
In Section III, we show how to synthesize a new nonlinear
element which has the same operating point and linear charac-
teristics, but different nonlinear characteristics. In Section IV,
we show how to use this element with scalable nonlinear terms
to obtain individual distortion contributions. In Section V
the proposed technique is verified by applying it to several
examples. Section VI concludes the paper.

II. EXISTING METHODS FOR DETERMINING INDIVIDUAL
CONTRIBUTIONS TO DISTORTION

In case of a cascade of open loop stages, one can simu-
late the distortion of the stages individually to determine their
contributions. In cases where a stage is significantly loaded
by the following one, it is harder to isolate the contributions.
For closed loop systems, which are frequently used for low
distortion applications, this method is not applicable.

The probing method described in [1] successively
evaluates higher order nonlinear contributions by injecting
additional nonlinear sources to the linear equivalent circuit.
This is further developed or simplified for analog integrated
circuits in, e.g., [2], [3], [4], [5] for analysis and to gain
insight into distortion behavior of circuits. All of these are
based on Taylor or Volterra series descriptions of the circuit
components, which, as pointed out earlier, are not readily
available, and have to be extracted by the designer. The specific
question of systematically determining per-element distortion
contributions is addressed in [6]. This describes an algorithm
that can be used in a simulator to determine per-element
contributions and cannot be used by a circuit designer running
a conventional SPICE-like simulator.

[7] circumvents the extraction of nonlinear device mod-
els by using an appropriate multi-sine excitation with which
one can determine the equivalent additional distortion source
of each element. These sources are used in conjunction with
small-signal transfer functions determined by ac/noise analysis
to identify the distortion contribution from that particular
element. This is essentially a missing tone test, and it may
not be easy to relate this to conventional single-tone harmonic
distortion and two-tone intermodulation distortion tests. It also
involves choosing an appropriate multi-tone input signal which
entails additional labor.
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III. OBTAINING A DEVICE WITH SCALED NONLINEARITY

The proposed technique is based on substituting the
nonlinear element in the circuit by another nonlinear element
whose operating point and first order behavior are the same but
whose nonlinearity is different. For simplicity, the principle is
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Fig. 1. (a) Nonlinear element E, (b) Operating point, (c) Nonlinear one port
element constructed from two instances of E driven by V1a and V1b.

first illustrated with a memoryless one port element. Fig. 1(a)
shows a nonlinear element E with a current-voltage relation-
ship I1 = f (V1). Fig. 1(b) shows the same element E at a
certain operating point (V10, I10). Defining incremental voltage
v1 and current i1 respectively as v1 =V1−V10 and i1 = I1− I10
and expanding the nonlinear relationship in a Taylor series
around the operating point, we get
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The first term is the operating point, the second term is the
linear part, and successive terms are nonlinearities.

Now consider the one port in Fig. 1(c) which is
constructed from two instances of elements E driven with
voltages V1a and V1b. These voltages are related to V1, the
voltage across the one port, as follows:

V1a = V10 +a1 (V1 −V10) ,V1b = V10 +(1−a1)(V1 −V10) (2)

where a1 is a scaling factor. In other words, the two copies
of E experience differently scaled versions of the incremental
voltage v1 = (V1 −V10) applied to the one port. The current
I1 in the new one port element is defined as I1 = I1a + I1b −
I10. Using Taylor series expansions for I1a = f (V1a) and I1b =
f (V1b) we get

I1 = f (V10)+
d f
dV1
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It is clear from equations (1) and (3) that the nonlinear one
port in Fig. 1(c) has the same operating point and linear terms
as the one port in Fig. 1(a), but scaled nonlinear terms. The
Nth order term in the series is scaled by aN

1 +(1−a1)
N .

This reasoning can be easily extended to two or more
ports. Fig. 2(a) shows a two port E with voltage V1,V2 and
current I1, I2. Fig. 2(b) shows the operating point condition.
Fig. 2(c) shows a new two port network constructed from two
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Fig. 2. (a) Nonlinear two port E, (b) Operating point, (c) Nonlinear two
port constructed from two instances of E driven by V1a,2a and V1b,2b.

instances of E which receive scaled versions of the incremental
voltages above the operating point. The voltages applied to the
two ports and the port currents are given by the relationships
in Fig. 2(d). Using similar reasoning as with the one port, it
is clear that I1 and I2 of the composite two port network in
Fig. 2(c) consist of the same operating point and first order
terms as in the original two port in Fig. 2(a), but have scaled
higher order terms. Table I lists the scaling factors for second
and third order terms in I1 and I2. The pattern for higher order
terms is obvious.

TABLE I
SCALING FACTORS FOR NONLINEAR TERMS OF THE TWO PORT

Second Scaling Third Scaling
order factor order factor

v2
1 a2

1 +(1−a1)2 v3
1 a3

1 +(1−a1)3

v1v2 a1a2 +(1−a1)(1−a2) v2
1v2 a2

1a2 +(1−a1)2(1−a2)
v2

2 a2
2 +(1−a2)2 v1v2

2 a1a2
2 +(1−a1)(1−a2)2

v3
2 a3

2 +(1−a2)3

In an M port network, one would need M scaling factors
a1, . . .aM to scale the incremental port voltages v1, . . .vM . The
Nth order nonlinear term in the scaled network will be of
the form ∏M

k=1 vlk
k where 0 ≤ lk ≤ N. The scaling factor for

this term would be ∏M
k=1 alk

k +∏M
k=1(1−ak)

lk . Though Taylor
series expressions are used above for simplicity, the method is
equally applicable to nonlinearity with memory. An N th order
term of the Volterra series of an M port network in which vk
appears lk times (0 ≤ lk ≤ N) will be scaled by the same factor
∏M

k=1 alk
k +∏M

k=1(1−ak)
lk .

IV. DETERMINING AN ELEMENT’S CONTRIBUTION

Fig. 3(a) shows a circuit with a nonlinear two-port ele-
ment E whose contribution to distortion has to be determined.
For clarity of discussion, we consider a single sinusoidal input
voltage Vs, a voltage Vout as the output, and a two port E
which has nonlinear terms only up to the second order. But the
technique is general and works in the same way for multi-tone
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Fig. 3. (a) Original circuit with element E, (b) Circuit with E replaced by
its scaled version and a copy of the original circuit at the operating point.

inputs, currents instead of voltages, and multi-port nonlinear
elements with higher orders of nonlinear terms.

First, the distortion H0
out of the circuit in Fig. 3(a) is

simulated. H0
out stands for any distortion component of interest

in the output Vout—harmonic distortion of a given order, or the
total harmonic distortion, or in case of multi-tone excitation,
the relevant intermodulation component(s). H0

out could be the
frequency domain representation (Fourier transform magnitude
and phase) of the distortion components or the time domain
distortion waveform. Here we will assume the former.

Then, the schematic in Fig. 3(b) is generated from
the original schematic. It consists of the circuit with the
nonlinear element E replaced by its scaled version with scaling
factors a1,a2. The scaled element E requires the operating
point information. Therefore, a copy of the original circuit in
quiescent condition is included in the schematic from which
the operating point information is extracted1. The distortion
Ha1,a2

out is simulated in this scaled circuit.
Let the distortion contributed to the output in the

original circuit (Fig. 3(a)) by the v2
1, v1v2, and v2

2 terms of
the element E be denoted by Hv2

1
, Hv1v2 , and Hv2

2
respectively.

Let Hrest denote the distortion contributed by the rest of the
circuit. Then, the total distortion H0

out in the original circuit is
given by

H0
out = Hv2

1
+Hv2

2
+Hv1v2 +Hrest (4)

When the nonlinear element E is scaled by a1,a2, the distor-
tion contributed by the v2

1, v1v2, and v2
2 terms will be scaled

as shown in Table I. The distortion contributed by the rest
of the circuit is not changed (This assumption holds when the
elements are weakly nonlinear and the distortion is small). The
output distortion Ha1,a2

out is therefore:

Ha1,a2
out =

(

a2
1 +(1−a1)

2)Hv2
1
+

(

a2
2 +(1−a2)

2)Hv2
2

+(a1a2 +(1−a1)(1−a2))Hv1v2 +Hrest (5)

Simulating the circuit in Fig. 3(b) for three different combina-
tions of a1,a2, yields us four equations—(4) and three cases of

1For convenience, the technique is illustrated with a duplicated circuit for
the operating point. But this duplication is not essential. As an alternative, the
operating point could be simulated first and appropriate information could be
fed to the scaled network E. Alternatively, one could, in transient simulation,
initially deactivate the input source and set the scaling factors to unity. This
yields the operating point information of the original circuit. After a certain
delay, these values could be sampled and held and fed to the scaled network,
the input signal activated, and the scaling factors set to the desired values.

(5)—from which the four unknowns Hv2
1
,Hv2

2
,Hv1v2 , and Hrest

can be determined.
If one is interested only in the total contribution from

second order terms Hv2
1,v2

2,v1v2
= Hv2

1
+Hv2

2
+Hv1v2 of E and not

in individual contributions from each second order term, one
can set a2 = a1. This results in

Ha1,a1
out =

(

a2
1 +(1−a1)

2)Hv2
1,v2

2,v1v2
+Hrest (6)

In this case, the circuit in Fig. 3(b) needs to be simulated only
for one value of a1 to can determine Hv2

1,v2
2,v1v2

and Hrest .
In the above, we assumed that the element E has

nonlinear terms only up to the second order. If the element
E has nonlinear terms up to N th order, N circuit simulations
are required to determine the total contribution from each of
the N − 1 nonlinear terms. If it is further required to resolve
the distortion into separate terms in each order, N(N +3)/2−1
simulations with distinct combinations of a1,a2 are required.
The number of significant nonlinear terms has to be initially
determined by trial and error. Apriori knowledge that some
terms are insignificant (e.g. even order terms in a fully differ-
ential two port) can reduce the number of simulations.

V. EXAMPLES

A. Common source amplifier with a resistive load
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Fig. 4. Common source amplifier with (a) resistive load (b) diode connected
load.
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Fig. 5. Output distortion components in Fig. 4(a) with scaling.

Fig. 4(a) shows a common source amplifier with a
resistive load. This circuit has a single nonlinear component,
the transistor, and is used to verify that components of different
order scale as described in the previous section. For input am-
plitudes such that there is negligible compression, a nonlinear



term of a given order contributes only to a harmonic of the
same order. Fig. 5 shows the output distortion components
for a 20 mV peak input signal for different values of a1.
Good agreement is seen between the expected scaling factor
aN

1 +(1−a1)
N and that obtained from simulation.

B. Common source amplifier with a MOS transistor load
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Fig. 6. Distortion contributions in Fig. 4(b).

Fig. 4(b) shows a common source amplifier with an
nMOS diode connected load. Since the load is a replica of the
amplifier, nonlinearities should cancel. The amplifier device
is scaled by a1 = 0.01 and the distortion contributions from
the amplifier and the load are calculated using the method in
Section IV. Fig. 6 shows the total (third harmonic) distortion
and the contributions from each device. It can be seen that
the contributions from the two components are almost equal
in magnitude. Simulation results show that these contributions
have opposite phase, which leads to cancellation. This can
also be seen from the fact that the total output distortion is
∼40dB below the contribution from either device. Extracting
the contributions using a different value of the scaling factor
a1 = 0.02 yields the same results.
C. Opamp in closed loop
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Fig. 7. (a) 4× inverting amplifier (b) Circuit diagram of the opamp in [8].

Fig. 7(a) shows an inverting amplifier of gain 4 with
a bandwidth of the ∼3MHz. Fig. 7(b) shows the opamp
used in the amplifier [8]. Distortion of the second stage is
extracted by scaling M5−10 by the same factor a1 = 0.01.
Similarly, contributions from different sections of the circuit
are extracted by scaling all the transistors in the corresponding
section. Fig. 8 shows the original distortion(third harmonic),
contributions from different stages, and the corresponding sum
versus input frequency for a 10 mV peak input signal. It can
be seen that the second stage and the common mode feedback
circuitry for the first stage are the major contributors to the
output distortion.
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Fig. 8. Distortion versus frequency for the amplifier in Fig. 7.

VI. CONCLUSIONS

A method has been proposed by which a circuit
designer can conveniently determine distortion contributions
from different elements and from different terms of each
element without going into device model details. It does not
require the extraction of Taylor or Volterra series models for
individual circuit elements. The technique is demonstrated by
applying it to a common source amplifier with linear and
nonlinear loads and a closed loop amplifier.

Since the modified element is based on instances of the
original element, and not an abstracted model, the proposed
technique also allows one to determine distortion contributions
with process or temperature variations. This is in contrast
to [2], [3], [4], [5] where the Taylor/Volterra model at each
corner has to be determined. The technique can be applied
to blocks (e.g. stages of an opamp, or the entire opamp) as
well as to individual transistors to produce a hierarchical
listing of distortion contributions. Because of its ease of
use, the proposed technique can serve as a convenient tool
for optimizing distortion or investigating the robustness of
distortion cancellation schemes.
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