Pipelined multi step A/D converters

Nagendra Krishnapura

Department of Electrical Engineering Indian Institute of Technology, Madras Chennai, 600036, India

04 Nov 2006

Nagendra Krishnapura Pipelined multi step A/D converters

ヘロト ヘ戸ト ヘヨト ヘヨト

3

Motivation for multi step A/D conversion

Flash converters:

- Area and power consumption increase exponentially with number of bits N
- Impractical beyond 7-8 bits.
- Multi step conversion-Coarse conversion followed by fine conversion
 - Multi-step converters
 - Subranging converters
- Multi step conversion takes more time
 - Pipelining to increase sampling rate

ヘロト ヘ戸ト ヘヨト ヘヨト

Two step A/D converter-basic operation

- Second A/D quantizes the quantization error of first A/D
- Concatenate the bits from the two A/D converters to form the final output

프 () () 프 ()

э

Two step A/D converter-basic operation

- A/D1, DAC, and A/D2 have the same range V_{ref}
- Second A/D quantizes the quantization error of first A/D
 - Use a DAC and subtractor to determine V_q
 - Amplify V_q to full range of the second A/D
- Final output *n* from *m*, *k*
 - A/D1 output is m (DAC output is $m/2^{M}V_{ref}$)
 - A/D2 input is at k^{th} transition $(k/2^{K}V_{ref})$

•
$$V_{in} = k/2^{K} V_{ref} \times 1/2^{M} + m/2^{M} V_{ref}$$

•
$$V_{in} = (2^K m + k)/2^{M+K} V_{ref}$$

 Resolution N = M + K, output ⇒ n = 2^Km + k ⇒ Concatenate the bits from the two A/D converters to form the final output

・ロン ・ 四 と ・ ヨ と ・ ヨ と …

Two step A/D converter: Example with M = 3, K = 2

- Second A/D quantizes the quantization error of first A/D
- Transitions of second A/D lie between transitions of the first, creating finely spaced transition points for the overall A/D.

Quantization error V_q

- V_q vs. V_{in}: Discontinuous transfer curve
 - Location of discontinuities: Transition points of A/D1
 - Size of discontinuities: Step size of D/A
 - Slope: unity

イロト 不得 とくほ とくほ とう

э

Two step A/D converter—ideal A/D1

- A/D1 transitions exactly at integer multiples of V_{ref}/2^M
- Quantization error V_q limited to $(0, V_{ref}/2^M)$
- $2^{M}V_{q}$ exactly fits the range of A/D2

Two step A/D converter—M bit accurate A/D1

- A/D1 transitions in error by up to $V_{ref}/2^{M+1}$
- Quantization error V_q limited to $(-V_{ref}/2^{M+1}, 3V_{ref}/2^{M+1})$ —a range of $V_{ref}/2^{M-1}$
- 2^MV_q overloads A/D2

A E > A E >

Two step A/D with digitial error correction (I)

- Reduce interstage gain to 2^{M-1}
- Add V_{ref}/2^{M+1} (0.5 LSB1) offset to DAC output to keep V_q positive
- Subtract 2^{K-2} from digital output to compensate for the added offset
- Overall accuracy is N = M + K 1 bits; A/D1 contributes M 1 bits, A/D2 contributes K bits; 1 bit redundancy
- Output $n = 2^{K-1}m + k 2^{K-2}$

ヘロト ヘ戸ト ヘヨト ヘヨト

Two step A/D with digitial error correction (I)—Ideal A/D1

- $2^{M-1}V_q$ varies from $V_{ref}/4$ to $3V_{ref}/4$
- $2^{M-1}V_q$ outside this range implies errors in A/D1

Two step A/D with digitial error correction (I)—M bit accurate A/D1

• $2^{M-1}V_q$ varies from 0 to V_{ref}

A/D2 is not overloaded for up to 0.5 LSB errors in A/D1

Two step A/D with digitial error correction (I)—M bit accurate A/D1

• A/D1 Transition shifted to the left

- m greater than its ideal value by 1
- k lesser than than its ideal value by 2^{K-1}
- A/D output $n = 2^{K-1}m + k 2^{K-2}$ doesn't change
- A/D1 Transition shifted to the right
 - m lesser than its ideal value by 1
 - k greater than than its ideal value by 2^{K-1}
 - A/D output $n = 2^{K-1}m + k 2^{K-2}$ doesn't change
- 1 LSB error in *m* can be corrected

★@→ ★理→ ★理→ -

Two step A/D with digitial error correction (II)

- Reduce interstage gain to 2^{M-1}
- Shift the transitions of A/D1 to the right by $V_{ref}/2^{M+1}$ (0.5 LSB1) to keep V_q positive
- Overall accuracy is N = M + K 1 bits; A/D1 contributes M 1 bits, A/D2 contributes K bits; 1 bit redundancy
- Output $n = 2^{K-1}m + k$, no digital subtraction required implies simpler digital logic

イロト 不得 トイヨト イヨト

Two step A/D with digitial error correction (II)—Ideal A/D1

- 2^{M-1} V_q varies from 0 to 3V_{ref}/4; V_{ref}/4 to 3V_{ref}/4 except the first segment
- $2^{M-1}V_q$ outside this range implies errors in A/D1

Two step A/D with digitial error correction (II)—M bit accurate A/D1

• $2^{M-1}V_q$ varies from 0 to V_{ref}

A/D2 is not overloaded for up to 0.5 LSB errors in A/D1

Two step A/D with digitial error correction (II)—M bit accurate A/D1

A/D1 Transition shifted to the left

- m greater than its ideal value by 1
- k lesser than than its ideal value by 2^{K-1}
- A/D output $n = 2^{K-1}m + k$ doesn't change
- A/D1 Transition shifted to the right
 - m lesser than its ideal value by 1
 - k greater than than its ideal value by 2^{K-1}
 - A/D output $n = 2^{K-1}m + k$ doesn't change
- 1 LSB error in *m* can be corrected

Two step A/D with digitial error correction (II-a)

- 0.5LSB (V_{ref}/2^{M-1}) shifts in A/D1 transitions can be tolerated
- If the last transition $(V_{ref} V_{ref}/2^{M-1})$ shifts to the right by $V_{ref}/2^{M-1}$, the transition is effectively nonexistent-Still the A/D output is correct
- Remove the last comparator $\Rightarrow M$ bit A/D1 has $2^M 2$ comparators set to $1.5V_{ref}/2^M, 2.5V_{ref}/2^M, \dots, V_{ref} - 1.5V_{ref}/2^M$
- Reduced number of comparators

・ロト ・ 理 ト ・ ヨ ト ・

Two step A/D with digitial error correction (IIa)—Ideal A/D1

- $2^{M-1}V_q$ varies from 0 to V_{ref} ; $V_{ref}/4$ to $3V_{ref}/4$ except the first and last segments
- $2^{M-1}V_q$ outside this range implies errors in A/D1

Two step A/D with digitial error correction (IIa)—M bit accurate A/D1

• $2^{M-1}V_q$ varies from 0 to V_{ref}

A/D2 is not overloaded for up to 0.5 LSB errors in A/D1

Two step A/D with digitial error correction (IIa)—M bit accurate A/D1

• A/D1 Transition shifted to the left

- m greater than its ideal value by 1
- k lesser than than its ideal value by 2^{K-1}
- A/D output $n = 2^{K-1}m + k$ doesn't change
- A/D1 Transition shifted to the right
 - m lesser than its ideal value by 1
 - k greater than than its ideal value by 2^{K-1}
 - A/D output $n = 2^{K-1}m + k$ doesn't change
- 1 LSB error in *m* can be corrected

Switched capacitor (SC) amplifi er

- φ₂: C₁ connected to ground; C₂ reset; reset switch provides dc negative feedback around the opamp
- ϕ_1 : Input sampled on C_1 ; C_2 in feedback
- $\phi_2 \rightarrow \phi_1$: Charge at virtual ground node is conserved $\Rightarrow V_{out} = -C_1/C_2 V_{in}$

・ロト ・ 理 ト ・ ヨ ト ・

Non inverting SC amplifi er

• Change the phase of input sampling to invert the gain

Nagendra Krishnapura Pipelined multi step A/D converters

A E > A E >

< < >> < <</>

э

SC realization of DAC and amplifi er

• Pipelined A/D needs DAC, subtractor, and amplifier

- V_{in} sampled on C_1 in ϕ_2 (positive gain)
- V_{ref} sampled on M/2^MC₁ in φ₁ (negative gain). M/2^MC₁ realized using a switched capacitor array controlled by A/D1 output
- $C_1/C_2 = 2^{M-1}$
- At the end of ϕ_1 , $V_{out} = 2^{M-1} \left(V_{in} m/2^M V_{ref} \right)$

Two stage converter timing and pipelining

ヨトメヨト

æ

Two stage converter timing and pipelining

- - S/H holds the input $V_i[n]$ from the end of previous ϕ_1
 - A/D1 samples the output of S/H
 - Amplifi er samples the output of S/H on C
 - Opamp is reset
- - S/H tracks the input
 - A/D1 regenerates the digital value m
 - Amplifi er samples V_{ref} of S/H on $m/2^M C$
 - Opamp output settles to the amplifi ed residue
 - A/D2 samples the amplifi ed residue
- - A/D2 regenerates the digital value *k*. *m*, delayed by 1/2 clock cycle, can be added to this to obtain the fi nal output
 - S/H, A/D1, Amplifi er function as before, but on the next sample V_i[n + 1]
- In a multistep A/D, the phase of the second stage is reversed when compared to the first, phase of the third stage is the same, and so on

Effect of opamp offset

- φ₂: C₁ is charged to V_{in} − V_{off} instead of V_{in} ⇒ input offset cancellation; no offset in voltage across C₂
- ϕ_2 : $V_{out} = -C_1/C_2 V_{in} + V_{off}$; Unity gain for offset instead of $1 + C_1/C_2$ (as in a continuous time amplifier)

ヘロト 人間 ト 人目 ト 人目 トー

э

Correction of offset on C_2

• ϕ_2 : Charge C_2 to the offset voltage instead of 0 V

• ϕ_1 : $V_{out} = -C_1/C_2 V_{in}$; Offset completely cancelled

A E > A E >

- Random mismatch: Capacitors must be large enough (relative matching α1/√WL to maintain DAC, amplifier accuracy
- Thermal noise: Capacitors must be large enough to limit noise well below 1 LSB. Opamp's input referred noise should be small enough.
- Opamp dc gain: Should be large enough to reduce amplifier's output error to $V_{ref}/2^{K+1}$.
- Opamp bandwidth: Should be large enough for amplifier's output settling error to be less than $V_{ref}/2^{K+1}$.

・ロット (雪) (日) (日) (日)

Thermal noise in SC amplifiers

- Noise from switch resistances
- Noise from the amplifier-ignored

Thermal noise in SC amplifi ers

- φ₂:
 - R_{sw1} : C_1 has a voltage noise of variance kT/C_1
 - R_{sw2} : C_2 has a voltage noise of variance kT/C_2 .
- ϕ_1 :
 - R_{sw1} : Its contribution in $\phi_2 (kT/C_1)$ will be amplified to $kT/C_1 (C_1/C_2)^2$
 - R_{sw2} : Its contribution in $\phi_2 (kT/C_1)$ will be held
 - R_{sw3} : Results in a noise kT/C_1 on C_1 and $kT/C_1(C_1/C_2)^2$ at the output
- Total output noise: $kT/C_2(2C_1/C_2+1) \approx 2kT/C_1(C_1/C_2)^2$
- Input referred noise: $kT/C_1(2 + C_2/C_1) \approx 2kT/C_1$
- C₁ must be large enough to minimize the effects of thermal noise

・ロン ・聞 とくほど ・ ほとう

Op amp models

- Opamp has finite dc gain, predominantly first order rolloff, and many high frequency poles
- High frequency poles should be beyond the unity gain frequency of the feedback loop gain (not necessarily the opamp's open loop gain) for stability.
- Effect of dc gain and first order rolloff modeled separately for simplicity

Effect of opamp dc gain

•
$$\phi_2$$
: $V_{out} = V_x = 0$

•
$$\phi_1$$
: $V_{out} = C_1/C_2 \times 1/1 + (1 + C_1/C_2)/A_0 V_{in}$;

Reduced dc gain in the amplifier

- Error should be smaller than $V_{ref}/2^{K+1} \Rightarrow A_0 > 2^{M+K} + 2^{K+1} 2^{M-1} 1$
- Approximately, $A_0 > 2^{M+K}$, 2/LSB of the overall converter

イロト イポト イヨト イヨト

Effect of finite unity gain frequency of the opamp

•
$$\phi_2$$
: $V_{out}(t) = V_x(t) = V_{out}(0) \exp(-\omega_u t)$

- Incomplete reset
- Worst case: $V_{out}(0) = V_{ref}$; Error smaller than $V_{ref}/2^{K+1}$ at the $t = T_s/2$

•
$$\omega_u \ge 2 \ln(2)(K+1)f_s$$

• $p_{2,3,...} > \omega_u$

イロト イポト イヨト イヨト

Effect of finite unity gain frequency of the opamp

•
$$\phi_1$$
: $V_{out}(t) = C_1 / C_2 V_{in} \left(1 - \exp(-\omega_u \frac{C_2}{C_1 + C_2} t) \right) + V_{out}(0) \exp(-\omega_u \frac{C_2}{C_1 + C_2} t)$

Incomplete settling of amplified residue V_q

- Worst case: $C_1/C_2 V_{in} = V_{ref}$; Error smaller than $V_{ref}/2^{K+1}$ at the $t = T_s/2$; $V_{out}(0) = 0$ after reset.
- $\omega_u/(1+2^{M-1}) \ge 2\ln(2)(K+1)f_s$ (ω_u in rad/s, f_s in Hz)
- $\omega_u/(1+2^{M-1})$ is the unity loop gain frequency assuming no parasitics

•
$$p_{2,3,...} > \omega_u / (1 + 2^{M-1})$$

くロト (得) (目) (日)

Effect of finite unity gain frequency of the opamp

- Depending on amplifier topology, reset and amplifying phases pose different constraints
- In our example, amplifying phase constraint is more stringent (loop gain in amplifying and reset phases are very different-better to have them close to each other)
- ω_u itself can depend on capacitive load(different for ϕ_1, ϕ_2)
- Higher order poles p₂, p₃,... need to be placed above the unity loop gain frequency, not necessarily ω_u

・ロト ・ 理 ト ・ ヨ ト ・

Single stage opamp-transconductor

- ϕ_1 : Capacitive load = C_1
- ϕ_2 : Capacitive load = $C_1 C_2 / (C_1 + C_2)$

Single stage opamp-transconductor

Loop broken at the opamp input to evaluate loop gain

• ϕ_1

- $V_{out}(s)/V_t(s) = g_m/sC_1$
- Opamp unity gain frequency $\omega_u = g_m/C_1$
- $V_{f}(s)/V_{t}(s) = g_{m}/sC_{1}$
- Unity loop gain frequency $\omega_{u,loop} = g_m/C_1$
- ϕ_2
 - $V_{out}(s)/V_t(s) = g_m/s(C_1C_2/C_1 + C_2)$
 - Opamp unity gain frequency $\omega_u = g_m/(C_1C_2/C_1 + C_2)$
 - $V_f(s)/V_t(s) = g_m/sC_1$
 - Unity loop gain frequency $\omega_{u,loop} = g_m/C_1$

・ 同 ト ・ ヨ ト ・ ヨ ト ・

- Two step architecture can be extended to multiple steps
- All stages except the last have their outputs digitally corrected from the following A/D output
- Accuracy of components in each stage depends on the accuracy of the A/D converter following it.
- Accuracy requirements less stringent down the pipeline, but optimizing every stage separately increases design effort
- Pipelined operation to obtain high sampling rates
- Last stage is not digitally corrected

<ロ> (四) (四) (三) (三) (三) (三)

Multi step A/D converter

- 4,4,4,3 bits for an effective resolution of 12 bits
- 3 effective bits per stage

A E > A E >

э

• Large number of stages, fewer bits per stage

- Fewer comparators, low accuracy-lower power consumption
- Larger number of amplifi ers-power consumption increases
- Larger latency
- Fewer stages, more bits per stage
 - More comparators, higher accuracy designs
 - Smaller number of amplifi ers-lower power consumption
 - Smaller latency
- Typically 3-4 bits per stage easy to design

ヘロト ヘ戸ト ヘヨト ヘヨト