EE658: VLSI Data Conversion Circuits; HW5

Nagendra Krishnapura (nagendra@iitm.ac.in)

due on 11 Nov. 2005

Submit all solutions by email as a single pdf file; $0.18 \mu \mathrm{~m}$ technology parameters: $V_{T n}=0.5 \mathrm{~V}$; $V_{T p}=0.5 \mathrm{~V} ; K_{n}=300 \mu \mathrm{~A} / V^{2} ; K_{p}=50 \mu \mathrm{~A} / V^{2}$; $A_{V T}=3.5 \mathrm{mV} \mu \mathrm{m} ; A_{\beta}=1 \% \mu \mathrm{~m} ; V_{d d}=1.8 \mathrm{~V} ;$ $L_{\text {min }}=0.18 \mu \mathrm{~m}, W_{\text {min }}=0.24 \mu \mathrm{~m}$;

Figure 1:

1. Sample and hold circuits: Fig. 1 shows 3 sample and hold circuits. $V_{i n}=V_{c m}+v_{i n} . V_{c m}=$ 0.4 V for nMOS S/H, $V_{c m}=0.9 \mathrm{~V}$ for complementary $\mathrm{S} / \mathrm{H}, V_{p}=0.3 V \max . \mathrm{C}=0.5 \mathrm{pF}$.

Simulate the circuits in track mode. Determine the switch size for a small signal tracking bandwidth of 0.5 GHz . For the complementary switch, size the nMOS and pMOS transistors for equal contributions to bandwidth.

Use the circuit in Fig. 1(d) to drive the circuit in Fig. 1(a) at a sampling rate of 1 GHz . Determine the inverter size for a rise/fall time of $50 \mathrm{ps}(10 \%$ to $90 \%)$ at the gate of M_{n}. Assume
that the input pulse source has 100 ps rise/fall times.

Where would you connect the bulk node of the pMOS transistors in Fig. 1(b)?

Simulate Fig. 1(b) and determine the sizes of M_{1-5} such that the waveform at the gate of M_{n} has a rise/fall time of 50 ps . Use $C_{b}=0.25 C$. For this simulation, use ideal pulse sources for ϕ and $\bar{\phi}$ with 50 ps rise/fall times. Then drive Fig. 1(b) with Fig. 1(d) and resize the inverters for 100 ps rise/fall times(10% to 90%) at the gates of M_{1-5}. C

Simulate each of the three S/H circuits designed above with $f_{s}=0.5 \mathrm{GHz}, v_{i n}=V_{p} \cos \left(\omega_{i n} t\right)$, $V_{p}=0.15 \mathrm{~V}$ and $V_{p}=0.3 \mathrm{~V}$ at input frequencies of $1 / 64 f_{s}$ and $33 / 64 f_{s}$. In each case report the strength of the fundamental, the second, and the third harmonic (use a 64 point DFT). Plot the waveforms at the input, output, and the gates of $M_{p, n}$. Comment on the results.

Simulate each of the three S/H circuits designed above with $f_{s}=0.5 \mathrm{GHz}$ and dc inputs of $v_{i n}=$ $\pm 0.15 \mathrm{~V}$ and $v_{i n}= \pm 0.3 \mathrm{~V}$. Determine the track to hold pedestal in each case.
2. Latch circuits: Simulate the latch in Fig. 2. Use minimum size nMOS transistors in the latch. Generate the input common mode voltage using a self biased inverter as shown. What is $V_{c m}$?

Figure 2:

Simulate the circuit with $T_{c l k}=1 \mathrm{~ns}, 100 \mathrm{ps}$ rise/fall times, and an alternating input-simulate 2 cases: alternating between $\pm \Delta V$ and alternating between $+31 \Delta V$ and $-\Delta V$. Determine the lowest ΔV that still results in correct latch decisions. This is the sensitivity of the latch.

Compute 3σ of the V_{T} mismatch between the input transistors.

Plot the current consumption of the latch for one cycle and compute the average power dissipation.

(a)

Figure 3:
3. Amplifier vs. positive feedback latch: Assuming zero initial conditions on the capacitors, calculate the output voltage of the circuits at the end of the time period T in Fig. 3 for a step input. What is the dynamic gain (ratio of the out-
put at the end of the time period T to the input step) of each circuit? Which one would you prefer to use in a comparator? Do the calculations for for $C / g_{m}=T / 3$ and $C / g_{m}=T / 10$.

Figure 4:
4. Simulate the two configurations shown in Fig. 4 for amplifier offsets of 0 V and 10 mV . Plot the outputs(overlaid). Explain the results.

