Nagendra Krishnapura

Department of Electrical Engineering
Indian Institute of Technology, Madras
Chennai, 600036, India

7 April 2010
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>G_m</td>
<td>g_m</td>
</tr>
<tr>
<td>G_{out}</td>
<td>$g_{ds1} + g_{ds3}$</td>
</tr>
<tr>
<td>A_o</td>
<td>$g_m/(g_{ds1} + g_{ds3})$</td>
</tr>
<tr>
<td>A_{cm}</td>
<td>g_{ds0}/g_m</td>
</tr>
<tr>
<td>C_i</td>
<td>$C_{gs1}/2$</td>
</tr>
<tr>
<td>ω_u</td>
<td>g_m/C_L</td>
</tr>
<tr>
<td>p_k, z_k</td>
<td>$p_2 = -g_m/(C_{db1} + C_{db3} + 2C_{gs3}); z_1 = 2p_2$</td>
</tr>
<tr>
<td>S_{vi}</td>
<td>$16kT/3g_m(1 + g_m/g_m)$</td>
</tr>
<tr>
<td>σ_{Vos}^2</td>
<td>$\sigma_{VT1}^2 + (g_m/g_m)^2\sigma_{VT3}^2$</td>
</tr>
<tr>
<td>V_{cm}</td>
<td>$\geq V_{T1} + V_{DSAT1} + V_{DSAT0}$</td>
</tr>
<tr>
<td></td>
<td>$\leq V_{dd} - V_{DSAT3} - V_{T3} + V_{T1}$</td>
</tr>
<tr>
<td>V_{out}</td>
<td>$\geq V_{cm} - V_{T1}$</td>
</tr>
<tr>
<td></td>
<td>$\leq V_{dd} - V_{DSAT3}$</td>
</tr>
<tr>
<td>SR</td>
<td>$\pm I_0/C_L$</td>
</tr>
<tr>
<td>I_{supply}</td>
<td>$I_0 + I_{ref}$</td>
</tr>
</tbody>
</table>
Cascode output resistance

\[R_{out} = \frac{g_{mc}}{g_{dsc}} G_s + \frac{1}{G_s} + \frac{1}{g_{dsc}} \]

\[V_{biasc} \]\(\Rightarrow\)\(M_c \)

\[G_s \]

\[V_{biasc} \]\(\Rightarrow\)\(M_c \)

\[V_{bias1} \]\(\Rightarrow\)\(G_s = g_{ds1} \)

\[M_1 \]

\[V_{bias1} \]\(\Rightarrow\)\(G_s = g_{m1} \)

\[V_{dd} \]

\[\text{differential pair: } \text{M}_c \text{ degenerated by } \text{M}_1 \text{'s source impedance (} g_{m1} \text{)} \]

- Output resistance looking into one side of the differential pair is \(2/g_{ds1} \) (\(g_{m1} = g_{mc} \) in the figure)

\[R_{out} = \frac{g_{mc}}{g_{dsc}g_{m1}} + \frac{1}{g_{dsc}} + \frac{1}{g_{m1}} \]

\[\text{(negligible)} \]

\[R_{out} = \frac{1}{g_{dsc}(1+g_{mc}/g_{m1})} \]
Opamp: dc small signal analysis

- Bias values in black
- Incremental values in red
- Impedances in blue

Total quantity = Bias + increment
Differential pair: Quiescent condition

\[V_{cm} \]

\[V_{bias0} \]

\[I_0/2 \]

\[V_{dd} \]

\[V_{dd} - V_{GS3} \text{ (by symmetry)} \]

M1, M2, M3, M4

\[V_{bias0} \]

\[V_{cm} \]

\[- \]

\[V_{dd} - V_{GS3} \]

zero current

Nagendra Krishnapura

EE539: Analog Integrated Circuit Design
Differential pair: Transconductance

\[\begin{align*}
T_{\text{ransconductance}} & = \frac{V_{cm}}{I_0/2} \\
V_{bias0} & \approx 0 \\
V_{dd} & \pm V_{GS3} \\
M_1 & \quad M_2 \\
M_3 & \quad M_4 \\
g_m v_d/2 & \quad g_m v_d/2 \\
+V_d/2 & \quad -V_d/2
\end{align*} \]
Differential pair: Output conductance

\[V_{cm} \]

\[I_0/2 \]

\[V_{bias0} \]

\[V_{dd} \]

\[-V_{GS3} \]

\[v_T g_{ds1}/2 + v_T g_{ds3} \]

\[v_T g_{ds1}/2 \]

\[v_T g_{ds1}/2 + v_T g_{ds3} \]

\[v_T (g_{ds1} + g_{ds3}) \]

\[v_T \]

\[V_{dd} - V_{GS3} \]

\[+v_T \]
Telescopic cascode: Quiescent condition

\[V_{bias0} \]

\[V_{biasn2} \]

\[V_{biasp2} \]

\[V_{cm} \]

\[I_0/2 \]

\[V_{dd} \]

\[V_{dd} - V_{GS3} \]

zero current

M1, M2, M3, M4, M5, M6, M7, M8

Nagendra Krishnapura

EE539: Analog Integrated Circuit Design
Telescopic cascode: Transconductance
Telescopic cascode: Output conductance

\[V_{\text{bias0}} / 2 \]

\[V_{\text{cm}} \]

\[V_{\text{biasp2}} \]

\[v_{T} g_{ds5} g_{ds1} / 2 g_{m5} \]

\[I_{0} / 2 \]

\[V_{dd} \]

\[V_{\text{biasn2}} \]

\[v_{T} g_{ds5} g_{ds1} / 2 g_{m5} \]

\[g_{ds1} / 2 \]

\[g_{ds5} g_{ds1} / 2 g_{m5} \]

\[v_{T} (g_{ds5} g_{ds1} / g_{m5} + g_{ds7} g_{ds3} / g_{m7}) \]

\[V_{biasn2} \]

\[v_{T} g_{ds5} g_{ds1} / 2 g_{m5} \]

\[V_{cm} \]

\[V_{bias0} \]

\[V_{V_{gs3}} \]

\[V_{dd} - V_{gs3} + v_{T} \]
Folded cascode: Quiescent condition

V_{cm}

$I_0/2$ $I_0/2$

M_1 M_2

V_{bias0}

V_{cm}

$I_0/2+I_1$

$I_0/2+I_1$ V_{bias1}

M_9 M_{10}

V_{dd}

V_{bias2}

V_{GS3}

I_1

I_1

V_{bias2}

zero current

M_3 M_4

M_5 M_6

M_7 M_8

M_9 M_{10}

V_{dd}
Folded cascode: Transconductance

\[I_0/2 + I_1 \]

\[V_{bias0} \]

\[V_{cm} + v_d/2 \]

\[g_m v_d/2 \]

\[V_{biasn2} \]

\[V_{GS3} \]

\[v_s \sim 0 \]

\[g_m v_d/2 \]

\[g_m v_d/2 \]

\[I_0/2 \]

\[M_1 \]

\[M_2 \]

\[M_3 \]

\[M_4 \]

\[M_5 \]

\[M_6 \]

\[M_7 \]

\[M_8 \]

\[M_9 \]

\[M_{10} \]

\[V_{dd} \]

\[I_0/2 + I_1 V_{bias1} \]

\[I_1 \]

\[g_m v_d/2 \]

\[g_m v_d/2 \]

\[g_m v_d/2 \]

\[g_m v_d/2 \]
Folded cascode: Output conductance

\[g_{\text{ds1}} / 2g_{m5} \]

\[V_{\text{bias0}} \]

\[V_{\text{cm}} \]

\[M_1 \]

\[M_2 \]

\[I_0 / 2 \]

\[I_0 / 2 \]

\[V_{\text{cm}} \]

\[M_3 \]

\[M_4 \]

\[M_5 \]

\[M_6 \]

\[M_7 \]

\[M_8 \]

\[M_9 \]

\[M_{10} \]

\[V_{\text{dd}} \]

\[I_0 / 2 + I_1 \]

\[I_0 / 2 + I_1 V_{\text{biasp1}} \]

\[V_{\text{biasp2}} \]

\[v_{T} g_{\text{ds5}} (g_{ds1} / 2 + g_{ds9}) / g_{m5} \]

\[V_{\text{biasn2}} \]

\[V_{\text{GS3}} \]

\[V_{T} (g_{ds5} (g_{ds1} + g_{ds9}) / g_{m5} + g_{ds7} g_{ds3} / g_{m7}) \]

\[V_{T} \]

\[+V_{T} \]

\[v_{T} g_{\text{ds5}} g_{\text{ds1}} / 2 g_{m5} + v_{T} g_{\text{ds7}} g_{\text{ds3}} / g_{m7} \]

Nagendra Krishnapura EE539: Analog Integrated Circuit Design
Differential pair: Noise

Carry out small signal linear analysis with one noise source at a time
Add up the results at the output (current in this case)
Add up corresponding spectral densities
Divide by gain squared to get input referred noise
Telescopic cascode opamp

The diagram shows a telescopic cascode opamp circuit with transistors M1, M2, M3, M4, M5, M6, M7, and M8. The circuit includes bias voltages V_{bias0}, V_{biasp2}, and V_{biasn2} and input and output signals labeled inp and out.
Telescopic cascode opamp

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>G_m</td>
<td>g_m</td>
</tr>
<tr>
<td>G_{out}</td>
<td>$g_{ds1}g_{ds5}/g_m + g_{ds3}g_{ds7}/g_m$</td>
</tr>
<tr>
<td>A_o</td>
<td>$g_m/g_{ds1}g_{ds5}/g_m + g_{ds3}g_{ds7}/g_m$</td>
</tr>
<tr>
<td>A_{cm}</td>
<td>g_{ds0}/g_m</td>
</tr>
<tr>
<td>C_i</td>
<td>$C_{gs1}/2$</td>
</tr>
<tr>
<td>ω_u</td>
<td>g_m/C_L</td>
</tr>
<tr>
<td>p_k, z_k</td>
<td>$p_2 = -g_m/(C_{db1} + C_{db3} + 2C_{gs3})$</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$p_3 = -g_m/C_{p5}$</td>
</tr>
<tr>
<td></td>
<td>$p_4 = -g_m/C_{p7}$</td>
</tr>
<tr>
<td></td>
<td>$p_{2,4}$ appear for one half and cause mirror zeros</td>
</tr>
<tr>
<td>S_{vi}</td>
<td>$16kT/3g_m (1 + g_m/g_m)$</td>
</tr>
<tr>
<td>$\sigma_{V os}^2$</td>
<td>$\sigma_{VT1}^2 + (g_m/g_m)^2\sigma_{VT3}^2$</td>
</tr>
<tr>
<td>V_{out}</td>
<td>$\geq V_{biasn1} - V_T5$</td>
</tr>
<tr>
<td></td>
<td>$\leq V_{biasp1} + V_T7$</td>
</tr>
<tr>
<td>SR</td>
<td>$\pm I_0/C_L$</td>
</tr>
<tr>
<td>I_{supply}</td>
<td>$I_0 + I_{ref}$</td>
</tr>
</tbody>
</table>

Nagendra Krishnapura
EE539: Analog Integrated Circuit Design
Folded cascode opamp
Folded cascode opamp

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>G_m</td>
<td>g_{m1}</td>
</tr>
<tr>
<td>G_{out}</td>
<td>$(g_{ds1} + g_{ds9})g_{ds5}/g_{m5} + g_{ds3}g_{ds7}/g_{m7}$</td>
</tr>
<tr>
<td>A_o</td>
<td>$g_{m1} / ((g_{ds1} + g_{ds9})g_{ds5}/g_{m5} + g_{ds3}g_{ds7}/g_{m7})$</td>
</tr>
<tr>
<td>A_{cm}</td>
<td>g_{ds0}/g_{m3}</td>
</tr>
<tr>
<td>C_i</td>
<td>$C_{gs1}/2$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frequency Domain</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω_u</td>
<td>g_{m1}/C_L</td>
</tr>
<tr>
<td>p_k, z_k</td>
<td>$p_2 = -g_{m3}/(C_{db1} + C_{db3} + 2C_{gs3})$</td>
</tr>
<tr>
<td></td>
<td>$p_3 = -g_{m5}/C_{p5}$</td>
</tr>
<tr>
<td></td>
<td>$p_4 = -g_{m7}/C_{p7}$</td>
</tr>
<tr>
<td></td>
<td>$p_{2,4}$ appear for one half and cause mirror zeros</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Noise</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_{vi}</td>
<td>$16kT/3g_{m1} (1 + g_{m3}/g_{m1} + g_{m9}/g_{m1})$</td>
</tr>
<tr>
<td>σ_{Vos}^2</td>
<td>$\sigma_{VT1}^2 + (g_{m3}/g_{m1})^2\sigma_{VT3}^2 + (g_{m9}/g_{m1})^2\sigma_{VT9}^2$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Output Voltage</th>
<th>Constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{out}</td>
<td>$\geq V_{biasn1} - V_T5$</td>
</tr>
<tr>
<td></td>
<td>$\leq V_{biasp1} + V_T7$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stability</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR</td>
<td>$\pm \min{I_0, I_1}/C_L$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Current</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{supply}</td>
<td>$I_0 + I_1 + I_{ref}$</td>
</tr>
</tbody>
</table>
Body effect

- All nMOS bulk terminals to ground
- All pMOS bulk terminals to V_{dd}
- A_{cm} has an additional factor $g_{m1}/(g_{m1} + g_{mb1})$
- $g_{m5} + g_{mb5}$ instead of g_{m5} in cascode opamp results
- $g_{m7} + g_{mb7}$ instead of g_{m7} in cascode opamp results
Two stage opamp

bias

stage 1

M₃ M₄

inn

M₁ M₂

inp

stage 2

V_{dd}

M₉

M₁₀

M₁₁

R_c

C_c

R_L

C_L

V_{outbias}
First stage can be Differential pair, Telescopic cascode, or Folded cascode; Ideal g_{m1} assumed in the analysis

Second stage: Common source amplifier

Frequency response is the product of frequency responses of the first stage g_m and a common source amplifier driven from a current source
Common source amplifier: Frequency response

\[
\frac{V_o(s)}{V_d(s)} = \left(\frac{g_m g_{m11}}{G_1 G_L} \right) \frac{sC_c (R_c - 1/g_{m11}) + 1}{a_3 s^3 + a_2 s^2 + a_1 s + 1} \tag{1}
\]

\[
a_3 = \frac{R_c C_1 C_L C_c}{G_1 G_L} \tag{2}
\]

\[
a_2 = \frac{C_1 C_c + C_c C_L + C_L C_1 + R_c C_c (G_1 C_L + C_1 G_L)}{G_1 G_L} \tag{3}
\]

\[
a_1 = \frac{C_c (g_{m11} + G_1 + G_L + G_1 G_L R_c) + C_1 G_L + G_1 C_L}{G_1 G_L} \tag{4}
\]

- \(G_1\): Total conductive load at the input
- \(G_L\): Total conductive load at the output
- \(C_1\): Total capacitive load at the input
- \(C_L\): Total capacitive load at the output
Common source amplifier: Poles and zeros

\[p_1 \approx -\frac{G_1}{C_c\left(\frac{g_{m11}}{G_L} + 1 + \frac{G_1}{G_L} + G_1 R_c\right) + C_1\left(1 + \frac{G_1}{G_L}\right)} \]

(5)

\[p_2 \approx -\frac{g_{m11} \frac{C_c}{C_1+C_c} + G_L + G_1 \frac{C_c+C_L}{C_1+C_c} + G_1 G_L R_c \frac{C_c}{C_1+C_c}}{\frac{C_1C_c}{C_1+C_c} + C_L + \frac{R_c C_c (G_1 C_L + G_L C_1)}{C_c+C_L}} \]

(6)

\[p_3 \approx -\left(\frac{1}{R_c} \left(\frac{1}{C_L} + \frac{1}{C_c} + \frac{1}{C_1}\right) + \frac{G_1}{C_1} + \frac{G_L}{C_L}\right) \]

(7)

\[z_1 = \frac{1}{(1/g_{m11} - R_c) C_c} \]

(8)

Unity gain frequency

\[\omega_u \approx \frac{g_{m1}}{C_c \left(1 + \frac{G_L}{g_{m11}} + \frac{G_1}{g_{m11}} + \frac{G_1 G_L R_c}{g_{m11}}\right) + C_1 \left(\frac{G_L}{g_{m11}} + \frac{G_1}{g_{m11}}\right)} \]

(9)
Pole splitting using compensation capacitor C_c
- p_1 moves to a lower frequency
- p_2 moves to a higher frequency (For large C_c, $p_2 = g_{m11}/C_L$)

Zero cancelling resistor R_c moves z_1 towards the left half s plane and results in a third pole p_3
- z_1 can be moved to ∞ with $R_c = 1/g_{m11}$
- z_1 can be moved to cancel p_2 with $R_c > 1/g_{m11}$ (needs to be verified against process variations)
- Third pole p_3 at a high frequency

Poles and zeros from the first stage will appear in the frequency response—$Y_{m1}(s)$ instead of g_{m1} in V_o/V_i above
- Mirror pole and zero
- Poles due to cascode amplifiers
Compensation cap sizing

\[p_2 \approx -\frac{g_{m11}}{C_1 + C_c} \frac{C_c}{C_1 C_c + C_L} \]

(10)

\[\omega_u \approx \frac{g_{m1}}{C_c} \]

(11)

Phase margin (Ignoring \(p_3, z_1, \ldots \))

\[\phi_M = \tan^{-1} \frac{|p_2|}{\omega_u} \]

(12)

\[\frac{|p_2|}{\omega_u} = \tan \phi_M \]

(13)

\[\frac{g_{m11}}{g_{m1}} \left(\frac{C_c}{C_L} \right)^2 = \frac{C_c}{C_L} \left(1 + \frac{C_1}{C_L} \right) \tan \phi_M + \frac{C_1}{C_L} \tan \phi_M \]

(14)

- For a given \(\phi_M \), solve the quadratic to obtain \(C_c / C_L \)
- If \(C_1 \) is very small, \(p_2 \approx -g_{m2}/C_L \); further simplifies calculations.
Two stage opamp

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_o</td>
<td>$g_{m1}g_{m11}/(g_{ds1} + g_{ds3})(g_{ds11} + g_{ds12})$</td>
</tr>
<tr>
<td>A_{cm}</td>
<td>$g_{ds0}g_{m11}/g_{m3}(g_{ds11} + g_{ds12})$</td>
</tr>
<tr>
<td>C_i</td>
<td>$C_{gs1}/2$</td>
</tr>
<tr>
<td>ω_u</td>
<td>g_{m1}/C_c</td>
</tr>
<tr>
<td>p_k, z_k</td>
<td>$16kT/3g_{m1}(1 + g_{m3}/g_{m1})$</td>
</tr>
<tr>
<td>S_{vi}</td>
<td>$\sigma^2_{V_{os}} \approx \sigma^2_{VT1} + (g_{m3}/g_{m1})^2\sigma^2_{VT3}$</td>
</tr>
<tr>
<td>V_{cm}</td>
<td>$\geq V_T1 + V_{DSAT1} + V_{DSAT0}$</td>
</tr>
<tr>
<td></td>
<td>$\leq V_{dd} - V_{DSAT3} - V_T3 + V_T1$</td>
</tr>
<tr>
<td>V_{out}</td>
<td>$\geq V_{DSAT12}$</td>
</tr>
<tr>
<td></td>
<td>$\leq V_{dd} - V_{DSAT11}$</td>
</tr>
<tr>
<td>$SR+$</td>
<td>I_0/C_c</td>
</tr>
<tr>
<td>$SR-$</td>
<td>$\min{I_0/C_c, I_1/(C_L + C_c)}$</td>
</tr>
<tr>
<td>I_{supply}</td>
<td>$I_0 + I_1 + I_{ref}$</td>
</tr>
</tbody>
</table>
Opamp comparison

<table>
<thead>
<tr>
<th></th>
<th>Differential</th>
<th>Telescopic</th>
<th>Folded</th>
<th>Two</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pair</td>
<td>cascode</td>
<td>cascode</td>
<td>stage</td>
</tr>
<tr>
<td>Gain</td>
<td>−</td>
<td>++</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>Noise</td>
<td>=</td>
<td>=</td>
<td>high</td>
<td>=</td>
</tr>
<tr>
<td>Offset</td>
<td>=</td>
<td>=</td>
<td>high</td>
<td>=</td>
</tr>
<tr>
<td>Swing</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>Speed</td>
<td>++</td>
<td>+</td>
<td>−</td>
<td>+</td>
</tr>
</tbody>
</table>
Low accuracy (low gain) applications
Voltage follower (capacitive load)
Voltage follower with source follower (resistive load)
In bias stabilization loops (effectively two stages in feedback)
Telescopic cascode

- Low swing circuits
- Switched capacitor circuits
 - Capacitive load
 - Different input and output common mode voltages
- First stage of a two stage opamp
 - Only way to get high gain in fine line processes
- Higher swing circuits
- Higher noise and offset
- Lower speed than telescopic cascode
 - Low frequency pole at the drain of the input pair
- Switched capacitor circuits (Capacitive load)
- First stage of a two stage class AB opamp
Two stage opamp

- Highest possible swing
- Resistive loads
- Capacitive loads at high speed
- “Standard” opamp: Miller compensated two stage opamp
- Class AB opamp: Always two (or more) stages
Opamps: pMOS versus nMOS input stage

- nMOS input stage
 - Higher g_m for the same current
 - Suitable for large bandwidths
 - Higher flicker noise (usually)

- pMOS input stage
 - Lower g_m for the same current
 - Lower flicker noise (usually)
 - Suitable for low noise low frequency applications
Fully differential circuits

- Two identical half circuits with some common nodes
- Two arms of the differential input applied to each half
- Two arms of the differential output taken from each half
Differential half circuit

Line of symmetry

Differential half circuit
Symmetrical

linear (or small signal linear) circuit under fully differential (antisymmetric) excitation

- Nodes along the line of symmetry at 0 V (symmetry, linearity)
- Analyze only the half circuit to find the transfer function
Common mode half circuit

Symmetrical circuit (maybe nonlinear) under common mode (symmetric) excitation

- Nodes in each half at identical voltages (symmetry)
- Fold over the circuit and analyze the half circuit
Common mode feedback circuit for setting the bias
Detect the output common mode and force it to be \(V_{o,cm} \) via feedback
Common mode feedback loop has to be stable

- Analyze it by breaking the loop and computing the loop gain with appropriate loading at the broken point
- Apply a common mode step/pulse in closed loop and ensure stability
Fully differential circuits: Noise

- Calculate noise spectral density of the half circuit
- Multiply by 2

\[S_{n,\text{full}} = 2S_{n,\text{half}} \]
Fully differential circuits: Offset

\[v_{off,full} = 2v_{off,half} + \Delta V_T \]

\[v_{off,full}^2 = 2v_{off,half}^2 \]

- Calculate mean squared offset of the half circuit
- Multiply by 2 if mismatch (e.g. \(\Delta V_T \)) wrt ideal device is used
Fully differential circuits: Offset

\[v_{\text{off,full}} = v_{\text{off,half}} + \Delta V_{T12} + \Delta V_{T34} \]

\[v_{\text{off,full}} = v_{\text{off,half}} + \Delta V_{T12} - \Delta V_{T34} \]

- Calculate mean squared offset of the half circuit
- Multiply by \(1 \times \) if mismatch between two real devices is used