EE539: Analog Integrated Circuit Design; Lecture 1

Nagendra Krishnapura (nagendra@iitm.ac.in)

06 Mar. 2006

1

Figure 1:

Current i can also be pushed in then upper limit of i is $|i|<I_{0}$ for both the transistors to be in saturation the limits on gate voltage V_{G} is given as

$$
V_{D s a t 0}+V_{D s a t 1}+V_{T}<V_{G}<V_{D D}-I_{0} R_{L}+V_{T}
$$

2

Figure 2:
for both the transistors to be in saturation the limits on gate voltage V_{G} is given as

$$
V_{D s a t 0}+V_{D \text { sat } 1}+V_{T}<V_{\text {bias }}+v<V_{D D}+V_{T}
$$

But in practice the upper limit on $V_{b i a s}+\mathrm{v}$ is only $V_{d d}$.
To get max. signal swing place $V_{\text {bias }}$ at the middle.

3

Figure 3:
differential input \Rightarrow differential output.
it also gives flexibility in biasing the transistors.

4

Figure 4:
To maximize gain $\uparrow g_{m} \Rightarrow \uparrow \mathrm{~W}$ or $\uparrow I_{D}$.

$$
\begin{aligned}
& g m=\frac{2 I_{0}}{V_{G S}-V_{T}} \\
& \mid \text { gain } \left\lvert\,=\frac{2 I_{0} R_{L}}{V_{G S}-V_{T}}=\frac{2 V_{R}}{V_{G S}-V_{T}}\right.
\end{aligned}
$$

so to increase gain $\Rightarrow \uparrow V_{R}$ or $\downarrow V_{G S}-V_{T}$
but max. value of V_{R} is $V_{d d}-V_{D s a t}$.
This is a certain limitation in increasing gain.
We can increase gain by increasing bias size of transistors or R_{L}.

$$
\text { Actualgain }=\frac{g_{m}}{G_{L}+g_{d s}}
$$

To set $G_{L}=0$ the load should be a current source.

5

Figure 5:
small changes in I_{1} causes large change in $V_{D S}$
for a fixed V_{G}, adjust I_{1} by feedback.

6

Figure 6:

We can terminate load R not only to $V_{d d}$ but also to any other $V_{\text {bias }}$.
(The intersection of the load line and the I_{D} vs $V_{D S}$ characteristics gives V_{0})

7

To change Bias point without changing the gain; change I_{0}
But I_{D} is very sensitive to variations in V_{G}; so to get correct value of V_{G} a current mirror is used

Current mirror

Figure 7:

8

Figure 8:

$$
\begin{aligned}
& \text { gain }=\frac{g_{m}}{2} v_{i d} \\
& n_{i}=\frac{n g_{m}}{2} v_{i d} \\
& v_{0}=\frac{n g_{m}}{2} v_{i d} R_{L} \\
& \text { Totalgain }=\frac{v_{0}}{v_{i d}}=\frac{n g_{m}}{2} v_{i d} R_{L}
\end{aligned}
$$

9

To get a gain of $g_{m} / g_{d s}$
The problem here is, the output bias point keeps changing
we can also have a problem with mismatch.

Figure 9:

