EE539: Analog Integrated Circuit Design

Nagendra Krishnapura (nagendra@iitm.ac.in)

$$
21 / 2 / 06
$$

COMPARISON OF COMMON SOURCE , CASCODE AND CAS-

 CADE STAGES.| PARAMETER | COMMON SOURCE | CASCODE | CASCADE |
| :--- | ---: | ---: | ---: |
| Transconductance | $g_{m 1}$ | $g_{m 1}$ | $\frac{g_{m 1}}{g_{d s 1}} g_{m 2}$ |
| Output impedance | $\frac{1}{g_{s 1}}$ | $\frac{g_{m 2}}{g_{d s} g_{d 2}}+\frac{1}{g_{s 1}}+\frac{1}{g_{d s 2}}$ | $\frac{1}{g_{d 2}}$ |
| DC gain | $\frac{g_{m 1}}{g_{d s 1}}$ | $\frac{g_{1 m} g_{m 2}}{g_{d s} g_{d s 2}}+\frac{g_{m 1}}{g_{d s 1}}+\frac{\frac{1 m}{m}}{g_{d s 2}}$ | $\frac{g_{m 1}}{g_{d s 1}} \frac{g_{m 2}}{g_{d s 2}}$ |

Figure 1: COMMON SOURCE, CASCODE AND CASCADE STAGES

Figure 2: CASCODE

FREQUENCY RESPONSE OF CASCODE

We consider the case when drain of the transistor is shorted, the result holds true if R_{L} is small

- Only if source impedance is present,then $C_{g s 1}$ will contribute to poles.
- The voltage gain at output of M_{1} is $\frac{g_{m 1}}{g_{m 2}+g_{m b s}}$, so miller multiplication for $C_{g d 1}$ is small.
- The transfer function should look like a first order LPF, as at high frequencies $C_{d b 1}+C_{g s 2}$ will be a short.
- The voltage transfer function will have two poles.
\diamond The High frequency pole at $P_{2}=\frac{g_{m 2}+g_{d s 1}}{C_{d b 1}+C_{g s 2}}$.
\diamond The Low frequency pole at $P_{1}=\frac{1}{R_{L}\left(C_{d b 2}+C_{g d 2}\right)}$.

Figure 3: CASCODE

Figure 4: FREQUENCY RESPONSE OF CASCODE

Figure 5: FREQUENCY RESPONSE OF CASCODE

Figure 6: FREQUENCY RESPONSE OF CASCODE

Let $C_{1}=C_{d b 1}+C_{g s 2}$

$$
\begin{align*}
I_{o} & =g_{m 1} V_{i n}+V_{x} s\left(C_{1}+C_{g d 1}\right)-V_{i n} s C_{g d 1}+V_{x} g_{d s 1} \tag{1}\\
I_{o} & =-\left(g_{m 2}+g_{d s 2}\right) V_{x} \tag{2}\\
\frac{I_{o}}{V_{i n}} & =\frac{g_{m 1}-s C_{g d 1}}{1+s\left(\frac{C_{1}+C_{g d 1}}{g_{m 2}+g_{d s 2}}\right)+\frac{g_{d s 1}}{g_{m 2}+g_{d s 2}}} \tag{3}
\end{align*}
$$

- Note that there is a difference in DC gain between approximate and actual analysis. This difference is due to the current flowing through $g_{d s 1}$, which was neglected in approximate analysis. The DC gain in approximate analysis was $g_{m 1}$ and in actual analysis is $\frac{g_{m 1}}{1+\frac{g_{d l}}{g_{m 2}+y_{d s 2}}}$

