EE539: Analog Integrated Circuit Design

Nagendra Krishnapura (nagendra@iitm.ac.in)

21/2/06

COMPARISON OF COMMON SOURCE , CASCODE AND CASCADE STAGES.

PARAMETER	COMMON SOURCE	CASCODE	CASCADE
Transconductance	g_{m1}	g_{m1}	$rac{g_{m1}}{g_{ds1}}g_{m2}$
Output impedance	$\frac{1}{g_{ds1}}$	$\frac{g_{m2}}{g_{ds1}g_{ds2}} + \frac{1}{g_{ds1}} + \frac{1}{g_{ds2}}$	$\frac{1}{g_{ds2}}$
DC gain	$rac{g_{m1}}{g_{ds1}}$	$\frac{g_{m1}g_{m2}}{g_{ds1}g_{ds2}} + \frac{g_{m1}}{g_{ds1}} + \frac{g_{m2}}{g_{ds2}}$	$rac{g_{m1}}{g_{ds1}} rac{g_{m2}}{g_{ds2}}$

Figure 1: COMMON SOURCE, CASCODE AND CASCADE STAGES

Figure 2: CASCODE

FREQUENCY RESPONSE OF CASCODE

We consider the case when drain of the transistor is shorted, the result holds true if R_L is small

- Only if source impedance is present, then C_{gs1} will contribute to poles.
- ✤ The voltage gain at output of M_1 is $\frac{g_{m1}}{g_{m2}+g_{mbs2}}$, so miller multiplication for C_{gd1} is small.
- ✤ The transfer function should look like a first order LPF , as at high frequencies $C_{db1} + C_{gs2}$ will be a short.
- ✤ The voltage transfer function will have two poles.
 - ♦ The High frequency pole at $P_2 = \frac{g_{m2} + g_{ds1}}{C_{db1} + C_{gs2}}$.
 - \diamond The Low frequency pole at $P_1 = \frac{1}{R_L(C_{db2}+C_{qd2})}$.

Figure 4: FREQUENCY RESPONSE OF CASCODE

Figure 5: FREQUENCY RESPONSE OF CASCODE

Figure 6: FREQUENCY RESPONSE OF CASCODE

Let $C_1 = C_{db1} + C_{gs2}$

$$I_o = g_{m1}V_{in} + V_x s(C_1 + C_{gd1}) - V_{in}sC_{gd1} + V_x g_{ds1}$$
(1)

$$I_{o} = -(g_{m2} + g_{ds2})V_{x}$$

$$I_{o} = g_{m1} - sC_{gd1}$$
(2)
(3)

$$\frac{I_o}{V_{in}} = \frac{g_{m1} - s_{C_{gd1}}}{1 + s(\frac{C_1 + C_{gd1}}{g_{m2} + g_{ds2}}) + \frac{g_{ds1}}{g_{m2} + g_{ds2}}}$$
(3)

✓ Note that there is a difference in DC gain between approximate and actual analysis. This difference is due to the current flowing through g_{ds1} , which was neglected in approximate analysis. The DC gain in approximate analysis was g_{m1} and in actual analysis is $\frac{g_{m1}}{1 + \frac{g_{ds1}}{g_{m2} + g_{ds2}}}$