ANALOG IC DESIGN.

01 FEBRUARY 2006

1

$$\frac{V_0}{V_i} = \frac{g_m}{g_{ds} + G_L} = \frac{1 - \frac{sC_{gd}}{g_m}}{(1 + \frac{s}{P_1})(1 + \frac{s}{P_2})};$$

$$P_1 \approx \frac{1}{R_S(C_{gs} + C_{gs}A_{dc})}$$

$$P_2 \approx \frac{g_m + g_{ds} + G_L + G_s}{C_{gs} + C_L}$$

•C_{GD} causes pole spitting - i.e poles move apart as C_{GD} increases The zero of the transfer function is at $Z = \frac{g_m}{C_{GD}}$

Common Source Amplifier :

The zero can be before or after the second pole

loading increases as the size increases

 \Rightarrow Amplifer stages of Common source amplifier has moderate Z_{out}

$$Z_{out} = \frac{1}{g_{ds} + sC_L + sg_{gd}}$$

At high frequencies; we can neglect R_s compared to C_{gs} ; C_{gs} and C_{gd} will come in series and will have a low impedence At high frequencies..

