## EE539: ANALOG INTEGRATED CIRCUIT DESIGN.

## Nagendra Krishnapura(nagendra@iitm.ac.in)

## 04 JANUARY 2006

$\mathbf{V}_{\mathrm{DS}} \uparrow \Longrightarrow \mathbf{I} \uparrow \Rightarrow \vec{E}$ feild increases $\Rightarrow$ Charge moves faster; I increases;
$\mathbf{V}_{\mathbf{G S}} \uparrow \Longrightarrow \mathbf{I} \uparrow \quad$ because channel charges increases $\Rightarrow \mathrm{R}$ decreases.

$$
\begin{gathered}
I=\left(\frac{Q_{t o t}}{L_{0}}\right) v \Longrightarrow-\left(V_{G S}-V_{T}-V_{x}\right) C_{o x} W=\left(\frac{Q_{t o t}}{L}\right) v \\
I=C_{o x} W\left(V_{G S}-V_{T}-V_{x}\right) \mu_{n} \frac{d V(x)}{d x} \\
\int_{0}^{L} I_{D} d x=\int_{0}^{V_{D S}}\left(V_{G S}-V_{T}-V_{x}\right) d v \\
I_{D}=\mu_{n} C_{o x}\left(\frac{W}{L}\right)\left(\left(V_{G S}-V_{T}\right) V_{D S}-\frac{V_{D S}{ }^{2}}{2}\right) \quad V_{D S}<V_{G S}-V_{T} \\
I_{D S}=\mu_{n} C_{o x}\left(\frac{W}{2 L}\right)\left(V_{G S}-V_{T}\right)^{2} \quad\left(V_{D S}>V_{G S}-V_{T}\right)
\end{gathered}
$$


( All voltages referred to Source. )


Gate to channel voltage is smaller at Drain than at Source.

V(x) - Channel potential w.r.t Source



$$
\begin{array}{cc}
I_{D}=\mu_{n} C_{o x}\left(\frac{W}{L}\right)\left(\left(V_{G S}-V_{T}\right) V_{D S}-\frac{V_{D S}^{2}}{2}\right) & 0 \leq V_{D S} \leq V_{G S}-V_{T} \\
I_{D S}=\mu_{n} C_{o x}\left(\frac{W}{2 L}\right)\left(V_{G S}-V_{T}\right)^{2} \quad V_{D S} \geq V_{G S}-V_{T} \\
I_{D S}=0 \quad V_{G S}<V_{T}
\end{array}
$$

$\mathbf{V}_{\mathbf{G S}}-\mathbf{V}_{\mathbf{T}}$ - Overdrive Voltage (bias after you turn it on)

- Square law Device : (Large W,L few $\mu m$ )

Square law model valid for large Devices.
applications: Can be used in multipliers.

- $\mathrm{I}_{\mathrm{D}} \propto \mathrm{W}$ : reasonably accurate.

Current Density remains the same but I increases.

- $\mathrm{I}_{\mathrm{D}} \propto \mathbf{1} / \mathbf{L}:$ not exact;

Not quiet exact for short channels; for long channel FETs true.

- In triode regoin for very small $V_{D S}$

$$
I_{D} \approx \mu_{n} C_{o x}\left(\frac{W}{L}\right)\left(V_{G S}-V_{T}\right) V_{D S} \quad V_{D S} \ll V_{G S}-V_{T}
$$

$\Rightarrow$ conductor or resistor; value can be varied by varying the bias.


Region over which charge is present diminishes as we increase $V_{D S}$

For long channel devices $L-L^{\prime}$ is small compared to $L$;


## Electronically Variable Resistor :

$$
\begin{gathered}
\mu_{n} C_{o x}(W / 2 L)\left(V_{G S}-V_{T}\right)^{2} \frac{L}{L^{\prime}\left(V_{D S}\right)} \\
\frac{L}{L^{\prime}\left(V_{D S}\right)}=\frac{L}{L-\Delta L\left(V_{D S}\right)}=\frac{1}{1-\frac{\Delta L\left(V_{D S}\right)}{L}} \approx 1+\frac{\Delta L\left(V_{D S}\right)}{L}
\end{gathered}
$$

A given change in length has smaller effect for longer channel

$$
\begin{gathered}
\frac{\Delta L}{L}=1+K_{e q} \frac{V_{D S}}{L}=1+\lambda V_{D S} \\
\mu_{n} C_{o x}(W / 2 L)\left(V_{G S}-V_{T}\right)^{2}\left(1+\lambda V_{D S}\right)
\end{gathered}
$$

Discontinuity in Graph.


