EE539: Analog Integrated Circuit Design; HW5

Nagendra Krishnapura (nagendra@iitm.ac.in)

due on 15 Mar. 2006

Figure 1: Problem 1
$0.18 \mu \mathrm{~m}$ technology parameters: $V_{T n}=0.5 \mathrm{~V}$; $V_{T p}=0.5 \mathrm{~V} ; K_{n}=300 \mu \mathrm{~A} / V^{2} ; K_{p}=75 \mu \mathrm{~A} / V^{2}$; $A_{V T}=3.5 \mathrm{mV} \mu \mathrm{m} ; A_{\beta}=1 \% \mu \mathrm{~m} ; V_{d d}=1.8 \mathrm{~V}$; $L_{\text {min }}=0.18 \mu \mathrm{~m}, W_{\text {min }}=0.24 \mu \mathrm{~m}$; Ignore body effect unless mentioned otherwise. Ignore 1/f noise unless mentioned otherwise.

1. Determine the output and input referred noise voltages of the stages in Fig. 1.
2. A $1: 1$ current mirror has devices with sizes W / L and an output current I_{0} has an rms current mismatch in the output of $\sigma_{I 0}$. Redesign the current mirror to have an rms mismatch of $\sigma_{I 0} / 2$. (It should be usable in place of the origianl source).
3. A current mirror generating I_{0} is realized as shown in Fig. 2. It is required to support a minimum output voltage of $V_{\text {out }}$. It is proposed that the reference branch have a current I_{0} / n in order to minimize "overhead" currents. How do
the power consumption and noise compare with a $1: 1$ current mirror?
4. Compute the contribution to output current noise from noise current $i_{n 1}$ and $i_{n 2}$ in the two devices in Fig. 3.
5. Compute the effect of threshold voltage mismatch $\left(\Delta V_{t 1,2}\right)$ and current factor mismatch $\left(\Delta \beta_{1,2}\right)$ in the top and the bottom transistors in Fig. 4.
6. Compute v_{o} / v_{i} in the two circuits in Fig. 5. Calculate the tail node voltage in each case. Explain the results.
7. Compute the differential frequency response. Consider $g_{m}, C_{g s}, C_{g d}, C_{d b}$ in the calculations. What is the purpose of C_{f} ? What value would you set it to?
8. Design and simulate a $100 \mu \mathrm{~A}$ pMOS cascode current mirror using $0.5 \mu \mathrm{~m}$ length transistors

Figure 5: Problem 6

Figure 3: Problem 4

Figure 6: Problem 7
for $V_{\text {out }}=300 \mathrm{mV}$. Report the dc node voltages and the saturation voltages of each transistor. Plot the output impedance vs. frequency. Reduce W and L of the cascoding device by 2 x and plot $\left|Z_{\text {out }}\right|$ vs. frequency on the same plot. What do you infer?

Figure 4: Problem 5

