EE539: Analog Integrated Circuit Design; HW5

Nagendra Krishnapura (nagendra@iitm.ac.in)

due on 15 Mar. 2006

Figure 1: Problem 1

0.18 μ m technology parameters: $V_{Tn} = 0.5$ V; $V_{Tp} = 0.5$ V; $K_n = 300 \ \mu A/V^2$; $K_p = 75 \ \mu A/V^2$; $A_{VT} = 3.5 \ mV \ \mu$ m; $A_{\beta} = 1\% \ \mu$ m; $V_{dd} = 1.8$ V; $L_{min} = 0.18 \ \mu$ m, $W_{min} = 0.24 \ \mu$ m; Ignore body effect unless mentioned otherwise. Ignore 1/f noise unless mentioned otherwise.

- 1. Determine the output and input referred noise voltages of the stages in Fig. 1.
- 2. A 1:1 current mirror has devices with sizes W/L and an output current I_0 has an rms current mismatch in the output of σ_{I0} . Redesign the current mirror to have an rms mismatch of $\sigma_{I0}/2$. (It should be usable in place of the origianl source).
- 3. A current mirror generating I_0 is realized as shown in Fig. 2. It is required to support a minimum output voltage of V_{out} . It is proposed that the reference branch have a current I_0/n in order to minimize "overhead" currents. How do

the power consumption and noise compare with a 1:1 current mirror?

- 4. Compute the contribution to output current noise from noise current i_{n1} and i_{n2} in the two devices in Fig. 3.
- 5. Compute the effect of threshold voltage mismatch $(\Delta V_{t1,2})$ and current factor mismatch $(\Delta \beta_{1,2})$ in the top and the bottom transistors in Fig. 4.
- Compute v_o/v_i in the two circuits in Fig. 5. Calculate the tail node voltage in each case. Explain the results.
- 7. Compute the differential frequency response. Consider g_m, C_{gs}, C_{gd}, C_{db} in the calculations. What is the purpose of C_f? What value would you set it to?
- 8. Design and simulate a $100 \,\mu\text{A}$ pMOS cascode current mirror using $0.5 \,\mu\text{m}$ length transistors

Figure 5: Problem 6

Figure 4: Problem 5

Figure 6: Problem 7

for $V_{out} = 300 \, mV$. Report the dc node voltages and the saturation voltages of each transistor. Plot the output impedance vs. frequency. Reduce W and L of the cascoding device by 2x and plot $|Z_{out}|$ vs. frequency on the same plot. What do you infer?